Highly Efficient Strong Stability-Preserving Runge-Kutta Methods with Low-Storage Implementations

Strong stability-preserving (SSP) Runge-Kutta methods were developed for time integration of semidiscretizations of partial differential equations. SSP methods preserve stability properties satisfied by forward Euler time integration, under a modified time-step restriction. We consider the problem of finding explicit Runge-Kutta methods with optimal SSP time-step restrictions, first for the case of linear autonomous ordinary differential equations and then for nonlinear or nonautonomous equations. By using alternate formulations of the associated optimization problems and introducing a new, more general class of low-storage implementations of Runge-Kutta methods, new optimal low-storage methods and new low-storage implementations of known optimal methods are found. The results include families of low-storage second and third order methods that achieve the maximum theoretically achievable effective SSP coefficient (independent of stage number), as well as low-storage fourth order methods that are more efficient than current full-storage methods. The theoretical properties of these methods are confirmed by numerical experiment.

[1]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[2]  Inmaculada Higueras,et al.  Representations of Runge-Kutta Methods and Strong Stability Preserving Methods , 2005, SIAM J. Numer. Anal..

[3]  M. N. Spijker,et al.  An extension and analysis of the Shu-Osher representation of Runge-Kutta methods , 2004, Math. Comput..

[4]  J. Lambert Numerical Methods for Ordinary Differential Equations , 1991 .

[5]  R. Jeltsch,et al.  Generalized disks of contractivity for explicit and implicit Runge-Kutta methods , 1979 .

[6]  Steven J. Ruuth,et al.  Two Barriers on Strong-Stability-Preserving Time Discretization Methods , 2002, J. Sci. Comput..

[7]  Willem Hundsdorfer,et al.  High-order linear multistep methods with general monotonicity and boundedness properties , 2005 .

[8]  A. Robinson,et al.  On the practical importance of the SSP property for Runge–Kutta time integrators for some common Godunov‐type schemes , 2005 .

[9]  Inmaculada Higueras,et al.  On Strong Stability Preserving Time Discretization Methods , 2004, J. Sci. Comput..

[10]  Lee-Ad Gottlieb,et al.  Strong Stability Preserving Properties of Runge–Kutta Time Discretization Methods for Linear Constant Coefficient Operators , 2003, J. Sci. Comput..

[11]  Steven J. Ruuth,et al.  High-Order Strong-Stability-Preserving Runge-Kutta Methods with Downwind-Biased Spatial Discretizations , 2004, SIAM J. Numer. Anal..

[12]  Steven J. Ruuth Global optimization of explicit strong-stability-preserving Runge-Kutta methods , 2005, Math. Comput..

[13]  Rong Wang,et al.  Linear Instability of the Fifth-Order WENO Method , 2007, SIAM J. Numer. Anal..

[14]  M. N. Spijker,et al.  Computing optimal monotonicity-preserving Runge-Kutta methods , 2022 .

[15]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[16]  J. Verwer Explicit Runge-Kutta methods for parabolic partial differential equations , 1996 .

[17]  Sigal Gottlieb,et al.  On High Order Strong Stability Preserving Runge–Kutta and Multi Step Time Discretizations , 2005, J. Sci. Comput..

[18]  J. Kraaijevanger,et al.  Absolute monotonicity of polynomials occurring in the numerical solution of initial value problems , 1986 .

[19]  R. Lewis,et al.  Low-storage, Explicit Runge-Kutta Schemes for the Compressible Navier-Stokes Equations , 2000 .

[20]  E. Hairer,et al.  Solving Ordinary Differential Equations I , 1987 .

[21]  Colin B. Macdonald,et al.  Optimal implicit strong stability preserving Runge--Kutta methods , 2009 .

[22]  M. N. Spijker Contractivity in the numerical solution of initial value problems , 1983 .

[23]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[24]  Colin B. Macdonald,et al.  Constructing high-order Runge-Kutta methods with embedded strong-stability-preserving pairs , 2003 .

[25]  Willem Hundsdorfer,et al.  Monotonicity-Preserving Linear Multistep Methods , 2003, SIAM J. Numer. Anal..

[26]  J. Williamson Low-storage Runge-Kutta schemes , 1980 .

[27]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[28]  M. N. Spijker,et al.  Stepsize Restrictions for the Total-Variation-Diminishing Property in General Runge-Kutta Methods , 2004, SIAM J. Numer. Anal..

[29]  J. Kraaijevanger Contractivity of Runge-Kutta methods , 1991 .

[30]  Clint Dawson,et al.  Semi discrete discontinuous Galerkin methods and stage-exceeding-order, strong-stability-preserving Runge-Kutta time discretizations , 2007, J. Comput. Phys..

[31]  Steven J. Ruuth,et al.  Non-linear evolution using optimal fourth-order strong-stability-preserving Runge-Kutta methods , 2003, Math. Comput. Simul..

[32]  Steven J. Ruuth,et al.  A New Class of Optimal High-Order Strong-Stability-Preserving Time Discretization Methods , 2002, SIAM J. Numer. Anal..

[33]  Inmaculada Higueras,et al.  Monotonicity for Runge–Kutta Methods: Inner Product Norms , 2005, J. Sci. Comput..

[34]  Chi-Wang Shu Total-variation-diminishing time discretizations , 1988 .