Highly Efficient Strong Stability-Preserving Runge-Kutta Methods with Low-Storage Implementations
暂无分享,去创建一个
[1] E. Hairer,et al. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .
[2] Inmaculada Higueras,et al. Representations of Runge-Kutta Methods and Strong Stability Preserving Methods , 2005, SIAM J. Numer. Anal..
[3] M. N. Spijker,et al. An extension and analysis of the Shu-Osher representation of Runge-Kutta methods , 2004, Math. Comput..
[4] J. Lambert. Numerical Methods for Ordinary Differential Equations , 1991 .
[5] R. Jeltsch,et al. Generalized disks of contractivity for explicit and implicit Runge-Kutta methods , 1979 .
[6] Steven J. Ruuth,et al. Two Barriers on Strong-Stability-Preserving Time Discretization Methods , 2002, J. Sci. Comput..
[7] Willem Hundsdorfer,et al. High-order linear multistep methods with general monotonicity and boundedness properties , 2005 .
[8] A. Robinson,et al. On the practical importance of the SSP property for Runge–Kutta time integrators for some common Godunov‐type schemes , 2005 .
[9] Inmaculada Higueras,et al. On Strong Stability Preserving Time Discretization Methods , 2004, J. Sci. Comput..
[10] Lee-Ad Gottlieb,et al. Strong Stability Preserving Properties of Runge–Kutta Time Discretization Methods for Linear Constant Coefficient Operators , 2003, J. Sci. Comput..
[11] Steven J. Ruuth,et al. High-Order Strong-Stability-Preserving Runge-Kutta Methods with Downwind-Biased Spatial Discretizations , 2004, SIAM J. Numer. Anal..
[12] Steven J. Ruuth. Global optimization of explicit strong-stability-preserving Runge-Kutta methods , 2005, Math. Comput..
[13] Rong Wang,et al. Linear Instability of the Fifth-Order WENO Method , 2007, SIAM J. Numer. Anal..
[14] M. N. Spijker,et al. Computing optimal monotonicity-preserving Runge-Kutta methods , 2022 .
[15] S. Osher,et al. Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .
[16] J. Verwer. Explicit Runge-Kutta methods for parabolic partial differential equations , 1996 .
[17] Sigal Gottlieb,et al. On High Order Strong Stability Preserving Runge–Kutta and Multi Step Time Discretizations , 2005, J. Sci. Comput..
[18] J. Kraaijevanger,et al. Absolute monotonicity of polynomials occurring in the numerical solution of initial value problems , 1986 .
[19] R. Lewis,et al. Low-storage, Explicit Runge-Kutta Schemes for the Compressible Navier-Stokes Equations , 2000 .
[20] E. Hairer,et al. Solving Ordinary Differential Equations I , 1987 .
[21] Colin B. Macdonald,et al. Optimal implicit strong stability preserving Runge--Kutta methods , 2009 .
[22] M. N. Spijker. Contractivity in the numerical solution of initial value problems , 1983 .
[23] Chi-Wang Shu,et al. Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..
[24] Colin B. Macdonald,et al. Constructing high-order Runge-Kutta methods with embedded strong-stability-preserving pairs , 2003 .
[25] Willem Hundsdorfer,et al. Monotonicity-Preserving Linear Multistep Methods , 2003, SIAM J. Numer. Anal..
[26] J. Williamson. Low-storage Runge-Kutta schemes , 1980 .
[27] Chi-Wang Shu,et al. Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..
[28] M. N. Spijker,et al. Stepsize Restrictions for the Total-Variation-Diminishing Property in General Runge-Kutta Methods , 2004, SIAM J. Numer. Anal..
[29] J. Kraaijevanger. Contractivity of Runge-Kutta methods , 1991 .
[30] Clint Dawson,et al. Semi discrete discontinuous Galerkin methods and stage-exceeding-order, strong-stability-preserving Runge-Kutta time discretizations , 2007, J. Comput. Phys..
[31] Steven J. Ruuth,et al. Non-linear evolution using optimal fourth-order strong-stability-preserving Runge-Kutta methods , 2003, Math. Comput. Simul..
[32] Steven J. Ruuth,et al. A New Class of Optimal High-Order Strong-Stability-Preserving Time Discretization Methods , 2002, SIAM J. Numer. Anal..
[33] Inmaculada Higueras,et al. Monotonicity for Runge–Kutta Methods: Inner Product Norms , 2005, J. Sci. Comput..
[34] Chi-Wang Shu. Total-variation-diminishing time discretizations , 1988 .