Large Bayesian vector autoregressions with stochastic volatility and non-conjugate priors

Abstract Recent research has shown that a reliable vector autoregression (VAR) for forecasting and structural analysis of macroeconomic data requires a large set of variables and modeling time variation in their volatilities. Yet, there are no papers that provide a general solution for combining these features, due to computational complexity. Moreover, homoskedastic Bayesian VARs for large data sets so far restrict substantially the allowed prior distributions on the parameters. In this paper we propose a new Bayesian estimation procedure for (possibly very large) VARs featuring time-varying volatilities and general priors. We show that indeed empirically the new estimation procedure performs well in applications to both structural analysis and out-of-sample forecasting.

[1]  G. Koop Forecasting with Medium and Large Bayesian VARs , 2013 .

[2]  Charles H. Whiteman,et al.  Supplanting the''Minnesota''Prior: Forecasting Macroeconomic Time Series Using Real Business Cycle M , 1994 .

[3]  Sune Karlsson Forecasting with Bayesian Vector Autoregression , 2013 .

[4]  Mark Bognanni,et al.  A Class of Time-Varying Parameter Structural VARs for Inference under Exact or Set Identification , 2018, Working paper (Federal Reserve Bank of Cleveland).

[5]  John Geweke,et al.  Chapter 1 Bayesian Forecasting , 2006 .

[6]  D. Giannone,et al.  Large Bayesian vector auto regressions , 2010 .

[7]  N. Shephard,et al.  Stochastic Volatility: Likelihood Inference And Comparison With Arch Models , 1996 .

[8]  T. Sargent,et al.  Bayesian Fan Charts for U.K. Inflation: Forecasting and Sources of Uncertainty in an Evolving Monetary System , 2005 .

[9]  Giorgio E. Primiceri Time Varying Structural Vector Autoregressions and Monetary Policy , 2002 .

[10]  Domenico Giannone,et al.  Priors for the Long Run , 2016, Journal of the American Statistical Association.

[11]  Francis X. Diebold,et al.  Comparing Predictive Accuracy, Twenty Years Later: A Personal Perspective on the Use and Abuse of Diebold–Mariano Tests , 2012 .

[12]  Jean Boivin,et al.  Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach , 2003 .

[13]  A. Zellner An Introduction to Bayesian Inference in Econometrics , 1971 .

[14]  Minchul Shin,et al.  A New Approach to Identifying the Real Effects of Uncertainty Shocks , 2016, Journal of Business & Economic Statistics.

[15]  Frank Schorfheide,et al.  Priors from General Equilibrium Models for Vars , 2002 .

[16]  T. Sargent,et al.  Drifts and Volatilities: Monetary Policies and Outcomes in the Post WWII U.S. , 2003 .

[17]  T. Sargent,et al.  Drifts and Volatilities: Monetary Policies and Outcomes in the Post WWII U.S. , 2005 .

[18]  K. R. Kadiyala,et al.  Numerical Methods for Estimation and Inference in Bayesian VAR-models , 1997 .

[19]  G. Koop,et al.  Bayesian Compressed Vector Autoregressions , 2017, Journal of Econometrics.

[20]  Siddhartha Chib,et al.  Hierarchical analysis of SUR models with extensions to correlated serial errors and time-varying parameter models☆ , 1995 .

[21]  Robert B. Litterman Forecasting with Bayesian Vector Autoregressions-Five Years of Experience , 1984 .

[22]  Michele Lenza,et al.  Prior Selection for Vector Autoregressions , 2012, Review of Economics and Statistics.

[23]  Marco Del Negro,et al.  Common Drifting Volatility in Large Bayesian VARs ∗ , 2015 .

[24]  Todd E. Clark Real-Time Density Forecasts From Bayesian Vector Autoregressions With Stochastic Volatility , 2011 .

[25]  Todd E. Clark Real-Time Density Forecasts from VARs with Stochastic Volatility , 2009 .

[26]  Todd E. Clark,et al.  Bayesian VARs: Specification Choices and Forecast Accuracy , 2011 .

[27]  Serena Ng,et al.  Working Paper Series , 2019 .

[28]  Jacques H. Dreze,et al.  BAYESIAN ANALYSIS OF SIMULTANEOUS EQUATION SYSTEMS , 1983 .

[29]  Daniel F. Waggoner,et al.  A Gibbs sampler for structural vector autoregressions , 2003 .

[30]  Robert J. Shiller,et al.  Cointegration and Tests of Present Value Models , 1987, Journal of Political Economy.

[31]  C. Sims,et al.  Bayesian methods for dynamic multivariate models , 1998 .

[32]  Todd E. Clark,et al.  Macroeconomic Forecasting Performance under Alternative Specifications of Time-Varying Volatility , 2015 .

[33]  Sveriges Riksbank STEADY STATE PRIORS FOR VECTOR AUTOREGRESSIONS , 2008 .

[34]  Dimitris Korobilis,et al.  Large Time-Varying Parameter VARs , 2012 .

[35]  Todd E. Clark,et al.  Measuring Uncertainty and Its Impact on the Economy , 2016, Review of Economics and Statistics.

[36]  Sune Karlsson,et al.  Forecasting with generalized bayesian vector auto regressions , 1993 .

[37]  M. Glickman,et al.  Multivariate Stochastic Volatility via Wishart Processes , 2006 .

[38]  Antonello D’Agostino,et al.  Macroeconomic Forecasting and Structural Change , 2009, SSRN Electronic Journal.

[39]  J. Chan Large Bayesian Vector Autoregressions , 2019, Macroeconomic Forecasting in the Era of Big Data.

[40]  C. Sims A nine variable probabilistic macroeconomic forecasting model , 1993 .

[41]  J. Geweke,et al.  Bayesian Forecasting , 2004 .

[42]  Peter E. Rossi,et al.  Bayesian Analysis of Stochastic Volatility Models , 1994 .

[43]  Joshua C. C. Chan,et al.  Large Bayesian VARs: A Flexible Kronecker Error Covariance Structure , 2015, Journal of Business & Economic Statistics.

[44]  Arnold Zellner,et al.  An Introduction to Bayesian Inference in Econometrics. , 1974 .

[45]  C. Granger,et al.  Handbook of Economic Forecasting , 2006 .

[46]  Dimitris Korobilis,et al.  Adaptive hierarchical priors for high-dimensional vector autoregressions , 2019 .