Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems

We present a polynomial time approximation scheme for Euclidean TSP in fixed dimensions. For every fixed <italic>c</italic> > 1 and given any <italic>n</italic> nodes in <inline-equation><f><sc>R</sc></f> </inline-equation><supscrpt>2</supscrpt>, a randomized version of the scheme finds a (1 + 1/<italic>c</italic>)-approximation to the optimum traveling salesman tour in <italic>O(n</italic>(log <italic>n</italic>)<supscrpt><italic>O(c)</italic>)</supscrpt> time. When the nodes are in <inline-equation><f><sc>R</sc></f> </inline-equation><italic>d</italic>, the running time increases to <italic>O(n</italic>(log <italic>n</italic>)<supscrpt>(O(<inline-equation><f><rad><rcd>d</rcd></rad></f> </inline-equation></supscrpt>c))<supscrpt>d-1</supscrpt>). For every fixed <italic>c, d</italic> the running time is <italic>n</italic> • poly(log<italic>n</italic>), that is <italic>nearly linear</italic> in <italic>n</italic>. The algorithmm can be derandomized, but this increases the running time by a factor <italic>O(n<supscrpt>d</supscrpt></italic>). The previous best approximation algorithm for the problem (due to Christofides) achieves a 3/2-aproximation in polynomial time. We also give similar approximation schemes for some other NP-hard Euclidean problems: Minimum Steiner Tree, <italic>k</italic>-TSP, and <italic>k</italic>-MST. (The running times of the algorithm for <italic>k</italic>-TSP and <italic>k</italic>-MST involve an additional multiplicative factor <italic>k</italic>.) The previous best approximation algorithms for all these problems achieved a constant-factor approximation. We also give efficient approximation schemes for Euclidean Min-Cost Matching, a problem that can be solved exactly in polynomial time. All our algorithms also work, with almost no modification, when distance is measured using any geometric norm (such as <inline-equation><f>ℓ</f> </inline-equation><subscrpt><italic>p</italic></subscrpt> for <italic>p</italic> ≥ 1 or other Minkowski norms). They also have simple parallel (i.e., NC) implementations.

[1]  Christos H. Papadimitriou,et al.  An approximation scheme for planar graph TSP , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[2]  Joseph S. B. Mitchell,et al.  Approximation algorithms for geometric tour and network design problems (extended abstract) , 1995, SCG '95.

[3]  Z. A. Melzak On the Problem of Steiner , 1961, Canadian Mathematical Bulletin.

[4]  Santosh S. Vempala,et al.  A constant-factor approximation for the k-MST problem in the plane , 1995, STOC '95.

[5]  Luca Trevisan,et al.  When Hamming meets Euclid: the approximability of geometric TSP and MST (extended abstract) , 1997, STOC '97.

[6]  Mihalis Yannakakis,et al.  How easy is local search? , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[7]  H. Pollak,et al.  Steiner Minimal Trees , 1968 .

[8]  Naveen Garg,et al.  A 3-approximation for the minimum tree spanning k vertices , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[9]  Ronald L. Graham,et al.  Bounds for certain multiprocessing anomalies , 1966 .

[10]  Mihalis Yannakakis,et al.  The complexity of facets (and some facets of complexity) , 1982, STOC '82.

[11]  D. Eppstein,et al.  Approximation algorithms for geometric problems , 1996 .

[12]  Satish Rao,et al.  Approximating geometrical graphs via “spanners” and “banyans” , 1998, STOC '98.

[13]  Andrzej Lingas,et al.  A Polynomial Time Approximation Scheme for Euclidean Minimum Cost k-Connectivity , 1998, ICALP.

[14]  Brian W. Kernighan,et al.  An Effective Heuristic Algorithm for the Traveling-Salesman Problem , 1973, Oper. Res..

[15]  David P. Williamson,et al.  Analyzing the Held-Karp TSP Bound: A Monotonicity Property with Application , 1990, Inf. Process. Lett..

[16]  Otfried Cheong,et al.  Euclidean minimum spanning trees and bichromatic closest pairs , 1991, Discret. Comput. Geom..

[17]  Philip N. Klein,et al.  A polynomial-time approximation scheme for weighted planar graph TSP , 1998, SODA '98.

[18]  Matteo Fischetti,et al.  Weighted k-cardinality trees: Complexity and polyhedral structure , 1994, Networks.

[19]  Michel X. Goemans,et al.  Worst-case comparison of valid inequalities for the TSP , 1995, Math. Program..

[20]  David Eppstein Faster Geometric K-point MST Approximation , 1997, Comput. Geom..

[21]  Oscar H. Ibarra,et al.  Fast Approximation Algorithms for the Knapsack and Sum of Subset Problems , 1975, JACM.

[22]  Samir Khuller,et al.  Low-Degree Spanning Trees of Small Weight , 1996, SIAM J. Comput..

[23]  David Applegate,et al.  Finding Cuts in the TSP (A preliminary report) , 1995 .

[24]  S. S. Sengupta,et al.  The traveling salesman problem , 1961 .

[25]  David Eppstein,et al.  Iterated nearest neighbors and finding minimal polytopes , 1993, SODA '93.

[26]  David Eppstein,et al.  Parallel Construction of Quadtrees and Quality Triangulations , 1993, WADS.

[27]  Teofilo F. Gonzalez,et al.  P-Complete Approximation Problems , 1976, J. ACM.

[28]  A. Zelikovsky Better approximation bounds for the network and Euclidean Steiner tree problems , 1996 .

[29]  Joseph S. B. Mitchell,et al.  Guillotine Subdivisions Approximate Polygonal Subdivisions: A Simple Polynomial-Time Approximation Scheme for Geometric TSP, k-MST, and Related Problems , 1999, SIAM J. Comput..

[30]  Howard J. Karloff,et al.  New results on the old k-opt algorithm for the TSP , 1994, SODA '94.

[31]  Tetsuo Asano,et al.  Covering points in the plane by k-tours: towards a polynomial time approximation scheme for general k , 1997, STOC '97.

[32]  Mihalis Yannakakis,et al.  Optimization, approximation, and complexity classes , 1991, STOC '88.

[33]  Shen Lin Computer solutions of the traveling salesman problem , 1965 .

[34]  G. S. Lueker,et al.  Bin packing can be solved within 1 + ε in linear time , 1981 .

[35]  Sanjeev Arora,et al.  Polynomial time approximation schemes for Euclidean TSP and other geometric problems , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[36]  Christos H. Papadimitriou,et al.  The Complexity of the Lin-Kernighan Heuristic for the Traveling Salesman Problem , 1992, SIAM J. Comput..

[37]  J. Beardwood,et al.  The shortest path through many points , 1959, Mathematical Proceedings of the Cambridge Philosophical Society.

[38]  Dorit S. Hochbaum,et al.  Approximation Algorithms for NP-Hard Problems , 1996 .

[39]  Marshall W. Bern,et al.  The Steiner Problem with Edge Lengths 1 and 2 , 1989, Inf. Process. Lett..

[40]  Mark W. Krentel,et al.  Structure in locally optimal solutions , 1989, 30th Annual Symposium on Foundations of Computer Science.

[41]  Gerhard Reinelt,et al.  TSPLIB - A Traveling Salesman Problem Library , 1991, INFORMS J. Comput..

[42]  Joseph S. B. Mitchell,et al.  Guillotine subdivisions approximate polygonal subdivisions: a simple new method for the geometric k-MST problem , 1996, SODA '96.

[43]  Sanjeev Arora,et al.  Probabilistic checking of proofs; a new characterization of NP , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[44]  Carsten Lund,et al.  Proof verification and the intractability of approximation problems , 1992, FOCS 1992.

[45]  Jon Jouis Bentley,et al.  Fast Algorithms for Geometric Traveling Salesman Problems , 1992, INFORMS J. Comput..

[46]  Christos H. Papadimitriou,et al.  The Euclidean Traveling Salesman Problem is NP-Complete , 1977, Theor. Comput. Sci..

[47]  Pravin M. Vaidya Geometry helps in matching , 1988, STOC '88.

[48]  Satish Rao,et al.  Approximation schemes for Euclidean k-medians and related problems , 1998, STOC '98.

[49]  Dorit S. Hochba,et al.  Approximation Algorithms for NP-Hard Problems , 1997, SIGA.

[50]  Richard M. Karp,et al.  An efficient approximation scheme for the one-dimensional bin-packing problem , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[51]  Ronald L. Graham,et al.  Some NP-complete geometric problems , 1976, STOC '76.

[52]  Nicos Christofides Worst-Case Analysis of a New Heuristic for the Travelling Salesman Problem , 1976, Operations Research Forum.

[53]  László Lovász,et al.  Approximating clique is almost NP-complete , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[54]  W. B. Johnson,et al.  Extensions of Lipschitz mappings into Hilbert space , 1984 .

[55]  Richard M. Karp,et al.  Probabilistic Analysis of Partitioning Algorithms for the Traveling-Salesman Problem in the Plane , 1977, Math. Oper. Res..

[56]  David S. Johnson,et al.  Approximation algorithms for combinatorial problems , 1973, STOC.

[57]  L. Wolsey Heuristic analysis, linear programming and branch and bound , 1980 .