Magnesium-Based Compression Screws: A Novelty in the Clinical Use of Implants

Magnesium alloys are currently subject to much research for use in biodegradable implant applications. The challenge in this field of material development comprises the design of an alloy that provides adequate mechanical and corrosion properties combined with an excellent biocompatibility. While there are many approaches in current literature only one Mg-based application shows the potential to hit the market. MAGNEZIX® Compression Screws are the world’s first approved/CE-certified magnesium-based implants designed for use in biodegradable osteosyntheses applications in humans. Therefore, this paper focusses on challenges and current clinical results achieved by means of degradable compression screws. Insights into the screws’ process chain and approval processes are given. As these innovative screws have already been on the market for 2 years long-term results based on their use in surgery are discussed.

[1]  A Haverich,et al.  Left main coronary artery fistula exiting into the right atrium , 2003, Heart.

[2]  M. Kääb,et al.  Osteolysis after open shoulder stabilization using a new bio-resorbable bone anchor: a prospective, non-randomized clinical trial. , 2002, Injury.

[3]  E. Aghion,et al.  In vivo behavior of biodegradable Mg–Nd–Y–Zr–Ca alloy , 2012, Journal of Materials Science: Materials in Medicine.

[4]  D E Cutright,et al.  Tissue reaction to the biodegradable polylactic acid suture. , 1971, Oral surgery, oral medicine, and oral pathology.

[5]  H. Maier,et al.  Magnesium degradation products: effects on tissue and human metabolism. , 2014, Journal of biomedical materials research. Part A.

[6]  H. Haferkamp,et al.  In vivo corrosion of four magnesium alloys and the associated bone response. , 2005, Biomaterials.

[7]  Frank Witte,et al.  In vitro and in vivo corrosion measurements of magnesium alloys. , 2006, Biomaterials.

[8]  C. Klose,et al.  The Manufacture of Resorbable Suture Material from Magnesium – Drawing and Stranding of Thin Wires , 2011 .

[9]  O. Böstman,et al.  Foreign-body reactions to polyglycolide screws. Observations in 24/216 malleolar fracture cases. , 1992, Acta orthopaedica Scandinavica.

[10]  G. O. Hofmann,et al.  Biodegradable implants in traumatology: a review on the state-of-the-art , 2004, Archives of Orthopaedic and Trauma Surgery.

[11]  W C de Bruijn,et al.  Foreign body reactions to resorbable poly(L-lactide) bone plates and screws used for the fixation of unstable zygomatic fractures. , 1993, Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons.

[12]  Frank Witte,et al.  The history of biodegradable magnesium implants: a review. , 2010, Acta biomaterialia.

[13]  Brian J. Tighe,et al.  A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies , 1998 .

[14]  J. Seitz,et al.  Characterization of MgNd2 alloy for potential applications in bioresorbable implantable devices. , 2012, Acta biomaterialia.

[15]  Erich Wintermantel,et al.  Biokompatible Werkstoffe und Bauweisen , 1996 .

[16]  Jeremy Goldman,et al.  Recent Advances in Biodegradable Metals for Medical Sutures: A Critical Review , 2015, Advanced healthcare materials.

[17]  G. Song,et al.  Understanding Magnesium Corrosion—A Framework for Improved Alloy Performance , 2003 .

[18]  E. Höpfner Ueber Gefässnaht, Gefässtransplantationen und Replantation von amputirten Extremitäten , 1903 .

[19]  A. Cross,et al.  Intramedullary interlocking nail stabilisation of 21 humeral fractures in 19 dogs and one cat. , 2002, Australian veterinary journal.

[20]  J. Yue,et al.  In vivo study of degradable magnesium and magnesium alloy as bone implant , 2007 .

[21]  Nick Birbilis,et al.  A survey of bio-corrosion rates of magnesium alloys , 2010 .

[22]  Alexis M Pietak,et al.  Magnesium and its alloys as orthopedic biomaterials: a review. , 2006, Biomaterials.

[23]  O. Böstman,et al.  Clinical biocompatibility of biodegradable orthopaedic implants for internal fixation: a review. , 2000, Biomaterials.

[24]  R. Schmidt,et al.  Physiologie des Menschen , 1993, Springer-Lehrbuch.

[25]  L. Lalonde,et al.  Pseudoaneurysm of the proper hepatic artery with duodenal fistula appearing as a late complication of blunt abdominal trauma. , 1996, The Journal of trauma.

[26]  J. Räihä Biodegradable implants as intramedullary nails. A survey of recent studies and an introduction to their use. , 1992, Clinical materials.

[27]  O. Böstman,et al.  Absorbable devices in the fixation of fractures. , 1996, The Journal of trauma.

[28]  A. Weiler,et al.  Foreign-body reaction and the course of osteolysis after polyglycolide implants for fracture fixation: experimental study in sheep. , 1996, The Journal of bone and joint surgery. British volume.

[29]  G. Song,et al.  Advances in Mg corrosion and research suggestions , 2013 .

[30]  Frank Witte,et al.  Degradable biomaterials based on magnesium corrosion , 2008 .

[31]  J. Hipp,et al.  Biomechanical properties of resorbable poly-L-lactide plates and screws: a comparison with traditional systems. , 1991, Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons.

[32]  Henning Windhagen,et al.  Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study , 2013, BioMedical Engineering OnLine.

[33]  V. Neubert,et al.  In vivo study of a biodegradable orthopedic screw (MgYREZr-alloy) in a rabbit model for up to 12 months , 2014, Journal of biomaterials applications.

[34]  H. Horch,et al.  Mund-Kiefer-Gesichtschirurgie , 1997 .

[35]  Yang Ke,et al.  Preliminary study of biodegradation of AZ31B magnesium alloy , 2007 .

[36]  S. Suzuki,et al.  Biodegradable Pin Fixation of Osteochondral Fragments of the Knee , 1996, Clinical orthopaedics and related research.

[37]  C Lindqvist,et al.  A 5-year in vitro and in vivo study of the biodegradation of polylactide plates. , 1998, Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons.

[38]  M. G. Seelig A STUDY OF MAGNESIUM WIRE AS AN ABSORBABLE SUTURE AND LIGATURE MATERIAL , 1924 .

[39]  Yufeng Zheng,et al.  In vitro corrosion and biocompatibility of binary magnesium alloys. , 2009, Biomaterials.

[40]  Berend Denkena,et al.  Biodegradable magnesium implants for orthopedic applications , 2012, Journal of Materials Science.

[41]  Vincent Vivier,et al.  An Impedance Investigation of the Mechanism of Pure Magnesium Corrosion in Sodium Sulfate Solutions , 2007 .

[42]  H. Windhagen,et al.  Frühergebnisse von distalen Metatarsale-1-Osteotomien bei Hallux valgus unter Verwendung eines biodegradierbaren Magnesium-Implantates , 2015 .

[43]  P. P. Mueller,et al.  Alkalization is responsible for antibacterial effects of corroding magnesium. , 2015, Journal of biomedical materials research. Part A.

[44]  T. Aizawa,et al.  Precipitation of magnesium apatite on pure magnesium surface during immersing in Hank's solution , 2001 .