Stopping criterion for linear anisotropic image diffusion: a fingerprint image enhancement case

Images can be broadly classified into two types: isotropic and anisotropic. Isotropic images contain largely rounded objects while anisotropics are made of flow-like structures. Regardless of the types, the acquisition process introduces noise. A standard approach is to use diffusion for image smoothing. Based on the category, either isotropic or anisotropic diffusion can be used. Fundamentally, diffusion process is an iterated one, starting with a poor quality image, and converging to a completely blurred mean-value image, with no significant structure left. Though the process starts by doing a desirable job of cleaning noise and filling gaps, called under-smoothing, it quickly passes into an over-smoothing phase where it starts destroying the important structure. One relevant concern is to find the boundary between the under-smoothing and over-smoothing regions. The spatial entropy change is found to be one such measure that may be helpful in providing important clues to describe that boundary, and thus provides a reasonable stopping rule for isotropic as well as anisotropic diffusion. Numerical experiments with real fingerprint data confirm the role of entropy-change in identification of a reasonable stopping point where most of the noise is diminished and blurring is just started. The proposed criterion is directly related to the blurring phenomena that is an increasing function of diffusion process. The proposed scheme is evaluated with the help of synthetic as well as the real images and compared with other state-of-the-art schemes using a qualitative measure. Diffusions of some challenging low-quality images from FVC2004 are also analyzed to provide a reasonable stopping rule using the proposed stopping rule.

[1]  J. Sponring The entropy of scale-space , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[2]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[3]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[4]  Terry Caelli,et al.  On the Representation of Image Structures via Scale Space Entropy Conditions , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Rafael C. González,et al.  Digital image processing, 3rd Edition , 2008 .

[6]  Yinan Kong,et al.  Boosting CED Using Robust Orientation Estimation , 2014 .

[7]  Azeddine Beghdadi,et al.  Contrast enhancement technique based on local detection of edges , 1989, Comput. Vis. Graph. Image Process..

[8]  Aurangzeb Khan,et al.  Fingerprint image enhancement using Principal Component Analysis (PCA) filters , 2010, 2010 International Conference on Information and Emerging Technologies.

[9]  H. Heinrich I. G. Petrowsk (Prof. an der Lomonossow-Univ. Moskau), Vorlesungen über partielle Differentialgleichungen. 296 S. m. 19 Abb. Leipzig 1955. B. G. Teubner Verlagsgesellschaft. Preis geb. DM 17,hyphen; . , 1956 .

[10]  Mark Nitzberg,et al.  Nonlinear Image Filtering with Edge and Corner Enhancement , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  C. Gottschlich,et al.  Oriented diffusion filtering for enhancing low-quality fingerprint images , 2012, IET Biom..

[12]  Pavel Mrázek Selection of Optimal Stopping Time for Nonlinear Diffusion Filtering , 2001, Scale-Space.

[13]  G. Cottet,et al.  Image processing through reaction combined with nonlinear diffusion , 1993 .

[14]  Tony Lindeberg,et al.  Fingerprint enhancement by shape adaptation of scale-space operators with automatic scale selection , 2000, IEEE Trans. Image Process..

[15]  Yehoshua Y. Zeevi,et al.  Estimation of optimal PDE-based denoising in the SNR sense , 2006, IEEE Transactions on Image Processing.

[16]  Joachim Weickert,et al.  Coherence-enhancing diffusion of colour images , 1999, Image Vis. Comput..

[17]  Karel J. Zuiderveld,et al.  Contrast Limited Adaptive Histogram Equalization , 1994, Graphics Gems.

[18]  Bernd Jähne,et al.  Spatio-Temporal Image Processing , 1993, Lecture Notes in Computer Science.

[19]  Yinan Kong,et al.  Fingerprint image enhancement using multi-scale DDFB based diffusion filters and modified Hong filters , 2014 .

[20]  Joachim Weickert,et al.  Coherence-Enhancing Diffusion Filtering , 1999, International Journal of Computer Vision.

[21]  Jon Sporring,et al.  The entropy of scale-space , 1996, ICPR.

[22]  François G. Meyer,et al.  Low-bit-rate efficient compression for seismic data , 2001, SPIE Optics + Photonics.

[23]  Guy Gilboa,et al.  Nonlinear Scale Space with Spatially Varying Stopping Time , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Yinan Kong,et al.  Stopping criterion for anisotropic image diffusion , 2016 .

[25]  Maria Petrou,et al.  On the choice of the parameters for anisotropic diffusion in image processing , 2013, Pattern Recognit..

[26]  Misha Elena Kilmer,et al.  Iterative Parameter-Choice and Multigrid Methods for Anisotropic Diffusion Denoising , 2011, SIAM J. Sci. Comput..

[27]  Bram van Ginneken,et al.  Automatic detection of red lesions in digital color fundus photographs , 2005, IEEE Transactions on Medical Imaging.

[28]  M. Cree,et al.  A comparison of computer based classification methods applied to the detection of microaneurysms in ophthalmic fluorescein angiograms , 1998, Comput. Biol. Medicine.

[29]  Eli Turkel,et al.  Stopping Criteria for Anisotropic PDEs in Image Processing , 2010, J. Sci. Comput..

[30]  Ihtesham Ul Islam,et al.  Robust multi-scale orientation estimation: Directional filter bank based approach , 2014, Appl. Math. Comput..

[31]  Andrew P. Witkin,et al.  Analyzing Oriented Patterns , 1985, IJCAI.

[32]  Qin Li,et al.  Detection of microaneurysms using multi-scale correlation coefficients , 2010, Pattern Recognit..

[33]  G. Hellwig Partial differential equations , 1964 .

[34]  R. Leis,et al.  Vorlesungen über partielle Differentialgleichungen zweiter Ordnung , 1967 .

[35]  S. Khan,et al.  Coherence enhancement diffusion using Multi-Scale DFB , 2011, 2011 7th International Conference on Emerging Technologies.

[36]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Anil K. Jain,et al.  Fingerprint Image Enhancement: Algorithm and Performance Evaluation , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[39]  Tariq M. Khan,et al.  Fingerprint image enhancement using data driven Directional Filter Bank , 2013 .

[40]  J. Weickert Scale-Space Properties of Nonlinear Diffusion Filtering with a Diffusion Tensor , 1994 .