Three-dimensional distribution of polymorphs and magnesium in a calcified underwater attachment system by diffraction tomography

Biological materials display complicated three-dimensional hierarchical structures. Determining these structures is essential in understanding the link between material design and properties. Herein, we show how diffraction tomography can be used to determine the relative placement of the calcium carbonate polymorphs calcite and aragonite in the highly mineralized holdfast system of the bivalve Anomia simplex. In addition to high fidelity and non-destructive mapping of polymorphs, we use detailed analysis of X-ray diffraction peak positions in reconstructed powder diffraction data to determine the local degree of Mg substitution in the calcite phase. These data show how diffraction tomography can provide detailed multi-length scale information on complex materials in general and of biomineralized tissues in particular.

[1]  H. Birkedal,et al.  The Mineralized Byssus of Anomia Simplex: a Calcified Attachment System , 2013 .

[2]  P. Bleuet,et al.  Diffraction/scattering computed tomography for three-dimensional characterization of multi-phase crystalline and amorphous materials , 2012 .

[3]  Stuart R. Stock,et al.  Diffraction microcomputed tomography of an Al-matrix SiC-monofilament composite , 2012 .

[4]  P. Cloetens,et al.  X-Ray Phase Nanotomography Resolves the 3D Human Bone Ultrastructure , 2012, PloS one.

[5]  P. Bleuet,et al.  "Compressed graphite" formed during C60 to diamond transformation as revealed by scattering computed tomography. , 2012, Physical review letters.

[6]  Peter Fratzl,et al.  Enamel-like apatite crown covering amorphous mineral in a crayfish mandible , 2012, Nature Communications.

[7]  M. Miller,et al.  High-energy diffraction microscopy at the advanced photon source , 2011 .

[8]  Bruce P. Lee,et al.  Mussel-Inspired Adhesives and Coatings. , 2011, Annual review of materials research.

[9]  O. Bunk,et al.  Ptychographic X-ray computed tomography at the nanoscale , 2010, Nature.

[10]  M. D. de Jonge,et al.  Quantitative 3D elemental microtomography of Cyclotella meneghiniana at 400-nm resolution , 2010, Proceedings of the National Academy of Sciences.

[11]  J. Macdonald,et al.  Attachment of oysters to natural substrata by biologically induced marine carbonate cement , 2010 .

[12]  H. Birkedal,et al.  Architecture of the Biomineralized Byssus of the Saddle Oyster (Anomia sp.) , 2009 .

[13]  S. Weiner,et al.  The grinding tip of the sea urchin tooth exhibits exquisite control over calcite crystal orientation and Mg distribution , 2009, Proceedings of the National Academy of Sciences.

[14]  James C. Weaver,et al.  Microstructural and Biochemical Characterization of the Nanoporous Sucker Rings from Dosidicus gigas , 2009 .

[15]  Stuart R. Stock,et al.  MicroComputed Tomography: Methodology and Applications , 2008 .

[16]  O. Paris From diffraction to imaging: New avenues in studying hierarchical biological tissues with x-ray microbeams (Review) , 2008, Biointerphases.

[17]  P. Fratzl,et al.  Editorial for biointerphases in focus: research on biointerfaces with neutrons and synchrotron radiation , 2008, Biointerphases.

[18]  Sidney R. Cohen,et al.  Sea Urchin Tooth Design: An “All‐Calcite” Polycrystalline Reinforced Fiber Composite for Grinding Rocks , 2008 .

[19]  P. Bleuet,et al.  Probing the structure of heterogeneous diluted materials by diffraction tomography. , 2008, Nature materials.

[20]  F De Carlo,et al.  High energy X-ray scattering tomography applied to bone. , 2008, Journal of structural biology.

[21]  Richard Weinkamer,et al.  Nature’s hierarchical materials , 2007 .

[22]  Jerry Kaplan,et al.  Localization of Iron in Arabidopsis Seed Requires the Vacuolar Membrane Transporter VIT1 , 2006, Science.

[23]  J. Quintana,et al.  Anisotropic lattice distortions in the mollusk-made aragonite: a widespread phenomenon. , 2006, Journal of structural biology.

[24]  G. Stucky,et al.  Distribution and Role of Trace Transition Metals in Glycera Worm Jaws Studied with Synchrotron Microbeam Techniques , 2005 .

[25]  J Herbert Waite,et al.  Adhesion à la Moule1 , 2002, Integrative and comparative biology.

[26]  P. Cloetens,et al.  Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays , 1999 .

[27]  K. Yamaguchi Cementation vs mobility: development of a cemented byssus and flexible mobility in Anomia chinensis , 1998 .

[28]  L. M. Walter,et al.  Relative precipitation rates of aragonite and Mg calcite from seawater: Temperature or carbonate ion control? , 1987 .

[29]  F. Mackenzie,et al.  Magnesian calcites; low-temperature occurrence, solubility and solid-solution behavior , 1983 .

[30]  C. Yonge Form and evolution in the anomiacea (mollusca: bivalvia)-pododesmus, anomia, patro, enigmonia (anomiidae): placunanomia, Placuna (placunidae fam. nov.) , 1977 .

[31]  H. Birkedal,et al.  Hierarchical Design and Nanomechanics of the Calcified Byssus of Anomia simplex , 2009 .

[32]  Yasuaki Seki,et al.  Biological materials: Structure and mechanical properties , 2008 .

[33]  K. Kamino Barnacle Underwater Attachment , 2006 .

[34]  E. Lauridsen,et al.  X-ray microscopy in four dimensions , 2006 .

[35]  J. Pujol,et al.  Analyse biochimique du byssus calcifié d'Anomia ephippium L. (Mollusque bivalve) , 2005, Calcified Tissue Research.

[36]  R. Prezant Functional microstructure and mineralogy of the byssal complex of Anomia simplex Orbigny (Bivalvia: Anomiidae) , 1984 .

[37]  E. Seydel Untersuchungen über den Byssusapparat der Lamellibranchiaten. , 1909 .