Solar hydrogen production with nanostructured metal oxides

The direct conversion of solar energy into hydrogen represents an attractive but challenging alternative for photo-voltaic solar cells. Several metal oxide semiconductors are able to split water into hydrogen and oxygen upon illumination, but the efficiencies are still (too) low. The operating principles of photo-electrochemical devices for water splitting, their main bottlenecks, and the various device concepts will be reviewed. Materials properties play a key role, and the advantages and pitfalls of the use of interfacial layers and dopants will be discussed. Special attention will be given to recent progress made in the synthesis of nanostructured metal oxides with high aspect ratios, such as nanowire arrays, which offers new opportunities to develop efficient photo-active materials for solar water splitting.

[1]  K. Hashimoto,et al.  Carbon-doped Anatase TiO2 Powders as a Visible-light Sensitive Photocatalyst , 2003 .

[2]  Piers R. F. Barnes,et al.  Enhancement of Photoelectrochemical Hydrogen Production from Hematite Thin Films by the Introduction of Ti and Si , 2007 .

[3]  H. Kisch,et al.  Daylight photocatalysis by carbon-modified titanium dioxide. , 2003, Angewandte Chemie.

[4]  Michael Grätzel,et al.  New Benchmark for Water Photooxidation by Nanostructured α-Fe2O3 Films , 2006 .

[5]  Hideki Kato,et al.  Visible-Light-Response and Photocatalytic Activities of TiO2 and SrTiO3 Photocatalysts Codoped with Antimony and Chromium , 2002 .

[6]  H. Sugihara,et al.  Photoelectrochemical decomposition of water into H2 and O2 on porous BiVO4 thin-film electrodes under visible light and significant effect of Ag ion treatment. , 2006, The journal of physical chemistry. B.

[7]  K. Domen,et al.  Photocatalyst releasing hydrogen from water , 2006, Nature.

[8]  J. Schoonman,et al.  Inorganic Nanocomposites of n‐ and p‐Type Semiconductors: A New Type of Three‐Dimensional Solar Cell , 2004 .

[9]  C. Lim,et al.  Substrate-friendly synthesis of metal oxide nanostructures using a hotplate. , 2006, Small.

[10]  Michael Grätzel,et al.  Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: nanostructure-directing effect of Si-doping. , 2006, Journal of the American Chemical Society.

[11]  Shahed U. M. Khan,et al.  PHOTOELECTROCHEMICAL SPLITTING OF WATER AT NANOCRYSTALLINE N-FE2O3 THIN-FILM ELECTRODES , 1999 .

[12]  Jinhua Ye,et al.  Photophysical and Photocatalytic Properties of MIn0.5Nb0.5O3 (M = Ca, Sr, and Ba) , 2003 .

[13]  H. Arakawa,et al.  Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO3-/I- shuttle redox mediator under visible light irradiation. , 2001, Chemical communications.

[14]  Hironori Arakawa,et al.  Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst , 2001, Nature.

[15]  A. Hagfeldt,et al.  Photoelectrochemical Studies of Oriented Nanorod Thin Films of Hematite , 2000 .

[16]  A. Kudo,et al.  Water Splitting into H 2 and O 2 on Alkali Tantalate Photocatalysts ATaO 3 (A = Li, Na, and K) , 2001 .

[17]  Stuart Licht,et al.  Multiple Band Gap Semiconductor/Electrolyte Solar Energy Conversion , 2001 .

[18]  Jinhua Ye,et al.  Photocatalytic Properties and Electronic Structure of a Novel Series of Solid Photocatalysts, Bi2RNbO7 (R = Y, Rare Earth) , 2003 .

[19]  J. Kennedy,et al.  Photooxidation of Water at α ‐ Fe2 O 3 Electrodes , 1978 .

[20]  Stuart Licht,et al.  Efficient Solar Water Splitting, Exemplified by RuO2-Catalyzed AlGaAs/Si Photoelectrolysis , 2000 .

[21]  N. Saito,et al.  Photocatalytic water decomposition by RuO2-loaded antimonates, M2Sb2O7 (M=Ca, Sr), CaSb2O6 and NaSbO3, with d10 configuration , 2002 .

[22]  Jinhua Ye,et al.  A new spinel-type photocatalyst BaCr2O4 for H2 evolution under UV and visible light irradiation , 2003 .

[23]  A. Ghosh,et al.  Transition-metal dopants for extending the response of titanate photoelectrolysis anodes , 1979 .

[24]  P. D. Jongh,et al.  Photoelectrochemistry of Electrodeposited Cu2 O , 2000 .

[25]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[26]  Julius M. Mwabora,et al.  Photoelectrochemical and Optical Properties of Nitrogen Doped Titanium Dioxide Films Prepared by Reactive DC Magnetron Sputtering , 2003 .

[27]  John B. Goodenough,et al.  Electrochemistry and photoelectrochemistry of iron(III) oxide , 1983 .

[28]  James R. Bolton,et al.  Limiting and realizable efficiencies of solar photolysis of water , 1985, Nature.

[29]  J. Schoonman,et al.  Mott-Schottky analysis of nanometer-scale thin-film anatase TiO2 , 1997 .

[30]  J. G. Mavroides,et al.  Photoelectrolysis of water in cells with SrTiO3 anodes , 1976 .

[31]  S. Oh,et al.  Highly Efficient Overall Water Splitting Through Optimization of Preparation and Operation Conditions of Layered Perovskite Photocatalysts , 2005 .

[32]  Jinhua Ye,et al.  A novel Zn-doped Lu2O3/Ga2O3 composite photocatalyst for stoichiometric water splitting under UV light irradiation , 2004 .

[33]  J. Schoonman,et al.  Addition of carbon to anatase TiO2 by n-hexane treatment- : surface or bulk doping? , 2006 .

[34]  A. Kudo,et al.  Water Splitting into H2 and O2 on New Sr2M2O7 (M = Nb and Ta) Photocatalysts with Layered Perovskite Structures: Factors Affecting the Photocatalytic Activity , 2000 .

[35]  J. Moser,et al.  Photoelectrochemical Studies on Nanocrystalline Hematite Films , 1994 .

[36]  M. Demuth,et al.  A titanium disilicide derived semiconducting catalyst for water splitting under solar radiation-reversible storage of oxygen and hydrogen. , 2007, Angewandte Chemie.

[37]  R. Černý,et al.  Photoelectrochemical oxidation of water at transparent ferric oxide film electrodes. , 2005, The journal of physical chemistry. B.

[38]  Anders Hagfeldt,et al.  Controlled Aqueous Chemical Growth of Oriented Three-Dimensional Crystalline Nanorod Arrays: Application to Iron(III) Oxides , 2001 .

[39]  Ruth Shinar,et al.  Photoactivity of doped αFe2O3 electrodes , 1982 .

[40]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[41]  L. Chou,et al.  Systematic Study of the Growth of Aligned Arrays of α‐Fe2O3 and Fe3O4 Nanowires by a Vapor–Solid Process , 2006 .

[42]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[43]  Eric L. Miller,et al.  Development of reactively sputtered metal oxide films for hydrogen-producing hybrid multijunction photoelectrodes , 2005 .

[44]  H. Arakawa,et al.  The photoinduced evolution of O2 and H2 from a WO3 aqueous suspension in the presence of Ce4+/Ce3+ , 2001 .

[45]  M. F. Weber,et al.  Splitting water with semiconducting photoelectrodes—Efficiency considerations , 1986 .

[46]  R. Rocheleau,et al.  Design considerations for a hybrid amorphous silicon/photoelectrochemical multijunction cell for hydrogen production , 2003 .

[47]  A. Kudo,et al.  A Novel Aqueous Process for Preparation of Crystal Form-Controlled and Highly Crystalline BiVO4 Powder from Layered Vanadates at Room Temperature and Its Photocatalytic and Photophysical Properties , 1999 .

[48]  K. Domen,et al.  A new type of water splitting system composed of two different TiO2 photocatalysts (anatase, rutile) and a IO3−/I− shuttle redox mediator , 2001 .

[49]  James L. Gole,et al.  Formation of Oxynitride as the Photocatalytic Enhancing Site in Nitrogen‐Doped Titania Nanocatalysts: Comparison to a Commercial Nanopowder , 2005 .

[50]  Gabor A. Somorjai,et al.  Synthesis, bulk, and surface characterization of niobium-doped Fe2O3 single crystals , 1986 .

[51]  Eric L. Miller,et al.  High-efficiency photoelectrochemical hydrogen production using multijunction amorphous silicon photoelectrodes , 1998 .

[52]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[53]  Carlos Algora,et al.  A GaAs solar cell with an efficiency of 26.2% at 1000 suns and 25.0% at 2000 suns , 2001 .

[54]  H. Zhang,et al.  Synthesis of large arrays of aligned α-Fe2O3 nanowires , 2003 .

[55]  C. Kisielowski,et al.  Bicrystalline hematite nanowires. , 2005, The journal of physical chemistry. B.

[56]  H. Kisch,et al.  Photocatalytic and photoelectrochemical properties of nitrogen-doped titanium dioxide. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[57]  K. Domen,et al.  Photocatalytic Decomposition of Water on Spontaneously Hydrated Layered Perovskites , 1997 .

[58]  Jinhua Ye,et al.  Photocatalytic Water Splitting with the Cr-Doped Ba2In2O5/In2O3 Composite Oxide Semiconductors , 2005 .

[59]  J. Kennedy,et al.  Photoactivity of Polycrystalline α ‐ Fe2 O 3 Electrodes Doped with Group IVA Elements , 1981 .

[60]  Turner,et al.  A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting , 1998, Science.

[61]  John A. Turner,et al.  High-efficiency integrated multijunction photovoltaic/electrolysis systems for hydrogen production , 2001 .

[62]  Zhong Lin Wang,et al.  Controlled growth of large-area, uniform, vertically aligned arrays of alpha-Fe2O3 nanobelts and nanowires. , 2005, The journal of physical chemistry. B.

[63]  Jinghua Guo,et al.  One‐Dimensional Quantum‐Confinement Effect in α‐Fe2O3 Ultrafine Nanorod Arrays , 2005 .

[64]  A. Bard,et al.  Determination of flat-band position of cadmium sulfide crystals, films, and powders by photocurrent and impedance techniques, photoredox reaction mediated by intragap states , 1985 .

[65]  M. Imai,et al.  A novel hydrogen-evolving photocatalyst InVO4 active under visible light irradiation , 2002 .

[66]  J. Schoonman,et al.  Gas-phase synthesis of nanostructured anatase TiO2 , 1998 .

[67]  Claes-Göran Granqvist,et al.  Photoelectrochemical study of sputtered nitrogen-doped titanium dioxide thin films in aqueous electrolyte , 2004 .

[68]  I. E. Grey,et al.  Efficiency of solar water splitting using semiconductor electrodes , 2006 .

[69]  D. E. Scaife Oxide semiconductors in photoelectrochemical conversion of solar energy , 1980 .

[70]  J. Schoonman,et al.  The Photoresponse of Iron- and Carbon-Doped TiO2 (Anatase) Photoelectrodes , 2004 .