High-Resolution Thin-Film Device to Sense Texture by Touch

Touch (or tactile) sensors are gaining renewed interest as the level of sophistication in the application of minimum invasive surgery and humanoid robots increases. The spatial resolution of current large-area (greater than 1 cm2) tactile sensor lags by more than an order of magnitude compared with the human finger. By using metal and semiconducting nanoparticles, a ∼100-nm-thick, large-area thin-film device is self-assembled such that the change in current density through the film and the electroluminescent light intensity are linearly proportional to the local stress. A stress image is obtained by pressing a copper grid and a United States 1-cent coin on the device and focusing the resulting electroluminescent light directly on the charge-coupled device. Both the lateral and height resolution of texture are comparable to the human finger at similar stress levels of ∼10 kilopascals.

[1]  P. Gregory,et al.  February , 1890, The Hospital.

[2]  R. Fowler,et al.  Electron Emission in Intense Electric Fields , 1928 .

[3]  R. Johansson,et al.  Tactile detection thresholds for a single asperity on an otherwise smooth surface. , 1983, Somatosensory research.

[4]  D. De Rossi,et al.  A stress-component-selective tactile sensor array , 1992 .

[5]  S. O. Kasap,et al.  Principles of electrical engineering materials and devices , 1996 .

[6]  P N Brett,et al.  A technique for measuring contact force distribution in minimally invasive surgical procedures , 1997, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[7]  P. Plinkert,et al.  Ein taktiler Sensor zur Gewebedifferenzierung in der Minimal Invasiven HNO-Chirurgie , 1997 .

[8]  Gero Decher,et al.  Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites , 1997 .

[9]  T. Mallouk,et al.  Layer-by-Layer Assembly of Thin Film Zener Diodes from Conducting Polymers and CdSe Nanoparticles , 1998 .

[10]  J. Barbera,et al.  Contact mechanics , 1999 .

[11]  S Ishiguro,et al.  Diagnosis of the extent of gastric cancers by a new endoscopic ultrasonic tactile sensor. , 2000, Gastrointestinal endoscopy.

[12]  Roger W. Brockett,et al.  Reconstructing the Shape of a Deformable Membrane from Image Data , 2000, Int. J. Robotics Res..

[13]  Paolo Dario,et al.  Humanoids and personal robots: Design and experiments , 2001, J. Field Robotics.

[14]  Michael F. Durstock,et al.  Dielectric Properties of Polyelectrolyte Multilayers , 2001 .

[15]  H. Asada,et al.  Photoplethysmograph fingernail sensors for measuring finger forces without haptic obstruction , 2001, IEEE Trans. Robotics Autom..

[16]  Allison M. Okamura,et al.  Feature Detection for Haptic Exploration with Robotic Fingers , 2001, Int. J. Robotics Res..

[17]  Vincent Hayward,et al.  Force can overcome object geometry in the perception of shape through active touch , 2001, Nature.

[18]  Russell M. Taylor,et al.  Hands-on tools for nanotechnology , 2001 .

[19]  Masayuki Inaba,et al.  Development of soft and distributed tactile sensors and the application to a humanoid robot , 2002, Adv. Robotics.

[20]  Paula T. Hammond,et al.  Fast Ion Conduction in Layer-By-Layer Polymer Films , 2003 .

[21]  Chang Liu,et al.  Institute of Physics Publishing Journal of Micromechanics and Microengineering Development of Polyimide Flexible Tactile Sensor Skin , 2022 .

[22]  Kaspar Althoefer,et al.  IEEE INT CONF ROBOT & AUTOMAT , 2003 .

[23]  Mitsuhiro Shikida,et al.  Active tactile sensor for detecting contact force and hardness of an object , 2003 .

[24]  S. Wagner,et al.  An elastically stretchable TFT circuit , 2004, IEEE Electron Device Letters.

[25]  A. Goodwin,et al.  Tactile discrimination of gratings , 2004, Experimental Brain Research.

[26]  Hiroaki Kitano,et al.  morph3: a compact-size humanoid robot system capable of acrobatic behavior , 2004, Adv. Robotics.

[27]  Vladimir V Tsukruk,et al.  Freely suspended nanocomposite membranes as highly sensitive sensors , 2004, Nature materials.

[28]  Takao Someya,et al.  A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Michael A. Haase,et al.  Recent Progress in Organic Electronics: Materials, Devices, and Processes , 2004 .

[30]  Charles R. Szmanda,et al.  Programmable polymer thin film and non-volatile memory device , 2004, Nature materials.

[31]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[32]  Yan-Bin Jia Localization of curved parts through continual touch , 2005, IEEE Transactions on Robotics.

[33]  E. Scilingo,et al.  Polymer based interfaces as bioinspired 'smart skins'. , 2005, Advances in colloid and interface science.

[34]  Zhong Lin Wang,et al.  Converting Ceria Polyhedral Nanoparticles into Single-Crystal Nanospheres , 2006, Science.