Input Parameters for the Simulation of Silicon Solar Cells in 2014

Within the silicon photovoltaics (PV) community, there are many approaches, tools, and input parameters for simulating solar cells, making it difficult for newcomers to establish a complete and representative starting point and imposing high requirements on experts to tediously state all assumptions and inputs for replication. In this review, we address these problems by providing complete and representative input parameter sets to simulate six major types of crystalline silicon solar cells. Where possible, the inputs are justified and up-to-date for the respective cell types, and they produce representative measurable cell characteristics. Details of the modeling approaches that can replicate the simulations are presented as well. The input parameters listed here provide a sensible and consistent reference point for researchers on which to base their refinements and extensions.

[1]  D. A. Clugston,et al.  PC1D version 5: 32-bit solar cell modeling on personal computers , 1997, Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference - 1997.

[2]  Heinrich Kurz,et al.  Heavily doped Si:P emitters of crystalline Si solar cells: recombination due to phosphorus precipitation , 2014 .

[3]  Johannes Greulich,et al.  Optical Simulation and Analysis of Iso-textured Silicon Solar Cells and Modules Including Light Trapping☆ , 2015 .

[4]  P. Altermatt,et al.  A freeware 1D emitter model for silicon solar cells , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[5]  Rolf Brendel,et al.  Modeling solar cells with the dopant‐diffused layers treated as conductive boundaries , 2012 .

[6]  M. L. Terry,et al.  Isotextured Silicon Solar Cell Analysis and Modeling 2: Recombination and Device Modeling , 2012, IEEE Journal of Photovoltaics.

[7]  Andres Cuevas,et al.  Physical model of back line-contact front-junction solar cells , 2013 .

[8]  M. Hermle,et al.  Effect of incomplete ionization for the description of highly aluminum-doped silicon , 2011 .

[9]  K. McIntosh,et al.  Determining the generation profile for silicon solar cells from lumped optical parameters , 2015, 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC).

[10]  Determination of the Effective Optical Width of Screen-Printed and Aerosol-Printed and Plated Fingers , 2008 .

[11]  M. Abbott,et al.  Silicon Ink Selective Emitter Solar Cells on Multi-Crystalline Silicon Wafers , 2010 .

[12]  A. Goetzberger,et al.  Crystalline Silicon Solar Cells , 1998 .

[13]  M. Green,et al.  Spatially resolved analysis and minimization of resistive losses in high-efficiency Si solar cells , 1996 .

[14]  Jürgen Schumacher,et al.  Numerical modeling of highly doped Si:P emitters based on Fermi–Dirac statistics and self-consistent material parameters , 2002 .

[15]  M. Green,et al.  24·5% Efficiency silicon PERT cells on MCZ substrates and 24·7% efficiency PERL cells on FZ substrates , 1999 .

[16]  R. M. Swanson,et al.  Measurement of the emitter saturation current by a contactless photoconductivity decay method , 1985 .

[17]  D.B.M. Klaassen,et al.  A unified mobility model for device simulation—I. Model equations and concentration dependence , 1992 .

[18]  Yang Li,et al.  Modelling of Light Trapping in Acidic-Textured Multicrystalline Silicon Wafers , 2012 .

[19]  Richard Corkish,et al.  Temperature dependence of the radiative recombination coefficient of intrinsic crystalline silicon , 2003 .

[20]  M. J. Dodge,et al.  Refractive properties of magnesium fluoride. , 1984, Applied optics.

[21]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[22]  David D. Smith,et al.  Toward the Practical Limits of Silicon Solar Cells , 2014, IEEE Journal of Photovoltaics.

[23]  Pietro P. Altermatt,et al.  Models for numerical device simulations of crystalline silicon solar cells—a review , 2011 .

[24]  Pierre J. Verlinden,et al.  Design, fabrication and characterisation of a 24.4% efficient interdigitated back contact solar cell , 2016 .

[25]  Thorsten Dullweber,et al.  Impurity-related limitations of next-generation industrial silicon solar cells , 2013, 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2.

[26]  M. Hermle,et al.  Efficiency Potential of $n$-Type Silicon Solar Cells With Aluminum-Doped Rear $p^{+}$ Emitter , 2012, IEEE Transactions on Electron Devices.

[27]  S. Glunz,et al.  Improved quantitative description of Auger recombination in crystalline silicon , 2012 .

[29]  Nico Wöhrle,et al.  Optical Modeling of the Rear Surface Roughness of Passivated Silicon Solar Cells , 2012 .

[30]  K. McIntosh,et al.  Simulation of emitter doping profiles formed by industrial POCl3 processes , 2013, 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC).

[31]  Martin A. Green,et al.  Optimized antireflection coatings for high-efficiency silicon solar cells , 1991 .

[32]  C. Ballif,et al.  Carrier transport and sensitivity issues in heterojunction with intrinsic thin layer solar cells on N-type crystalline silicon: A computer simulation study , 2010 .

[33]  Naoteru Matsubara,et al.  Achievement of More Than 25% Conversion Efficiency With Crystalline Silicon Heterojunction Solar Cell , 2014, IEEE Journal of Photovoltaics.

[34]  R. Preu,et al.  Very low surface recombination velocity on p-type c-Si by high-rate plasma-deposited aluminum oxide , 2009 .

[35]  Martin A. Green,et al.  Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients , 2008 .

[36]  M. Green,et al.  19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells , 1998 .

[37]  P. Altermatt,et al.  Reassessment of the intrinsic carrier density in crystalline silicon in view of band-gap narrowing , 2003 .

[38]  Christophe Ballif,et al.  Infrared light management in high-efficiency silicon heterojunction and rear-passivated solar cells , 2013 .

[39]  Makoto Tanaka,et al.  Temperature Dependence of Amorphous/Crystalline Silicon Heterojunction Solar Cells , 2008 .

[40]  Konstantinos Misiakos,et al.  Accurate measurements of the silicon intrinsic carrier density from 78 to 340 K , 1993 .

[41]  P. Altermatt,et al.  Formation of aluminum–oxygen complexes in highly aluminum-doped silicon , 2010 .

[42]  M. Green,et al.  Numerical quantification and minimization of perimeter losses in high‐efficiency silicon solar cells , 1996 .

[43]  Keith R. McIntosh,et al.  One‐dimensional photogeneration profiles in silicon solar cells with pyramidal texture , 2012 .

[44]  Andreas Schenk,et al.  Finite-temperature full random-phase approximation model of band gap narrowing for silicon device simulation , 1998 .

[45]  M. Green,et al.  RECOMBINATION RATE SATURATION MECHANISMS AT OXIDIZED SURFACES OF HIGH-EFFICIENCY SILICON SOLAR CELLS , 1995 .

[46]  Martin A. Green,et al.  Solar cell efficiency tables (version 41) , 2013 .

[47]  C. Ballif,et al.  Current Losses at the Front of Silicon Heterojunction Solar Cells , 2012, IEEE Journal of Photovoltaics.

[48]  Wilhelm Warta,et al.  Solar cell efficiency tables (version 42) , 2013 .

[49]  P. A. Basore,et al.  PC2D: A circular-reference spreadsheet solar cell device simulator , 2011, 2011 37th IEEE Photovoltaic Specialists Conference.

[50]  Bui Tuong Phong Illumination for computer generated pictures , 1975, Commun. ACM.

[51]  M. Glatthaar,et al.  A Predictive Optical Simulation Model for the Rear-Surface Roughness of Passivated Silicon Solar Cells , 2013, IEEE Journal of Photovoltaics.

[52]  Paul A. Basore,et al.  Numerical modeling of textured silicon solar cells using PC-1D , 1990 .

[53]  P. Altermatt,et al.  Relationships between Diffusion Parameters and Phosphorus Precipitation during the POCl3 Diffusion Process , 2013 .

[54]  K. McIntosh,et al.  3-D Simulation of Interdigitated-Back-Contact Silicon Solar Cells With Quokka Including Perimeter Losses , 2014, IEEE Journal of Photovoltaics.

[55]  Pritpal Singh,et al.  Two dimensional numerical modeling of a silicon solar cell with selective emitter configuration , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[56]  A. Blakers Shading losses of solar‐cell metal grids , 1992 .

[57]  M. Green,et al.  Limiting loss mechanisms in 23% efficient silicon solar cells , 1995 .

[58]  M. Green,et al.  Light trapping properties of pyramidally textured surfaces , 1987 .

[59]  A. Carr,et al.  19.5% Efficient N-type Si solar cells made in production , 2011 .

[60]  Andreas Wolf,et al.  Implementation of Fermi–Dirac statistics and advanced models in PC1D for precise simulations of silicon solar cells , 2014 .

[61]  Lachlan E. Black,et al.  On effective surface recombination parameters , 2014 .

[62]  C. Ballif,et al.  Silicon Heterojunction Solar Cells With Copper-Plated Grid Electrodes: Status and Comparison With Silver Thick-Film Techniques , 2014, IEEE Journal of Photovoltaics.

[63]  K. McIntosh,et al.  Isotextured Silicon Solar Cell Analysis and Modeling 1: Optics , 2012, IEEE Journal of Photovoltaics.

[64]  Armin G. Aberle,et al.  Optimised Antireflection Coatings using Silicon Nitride on Textured Silicon Surfaces based on Measurements and Multidimensional Modelling , 2012 .

[65]  A. W. Blakers,et al.  Quantifying the optical losses in back-contact solar cells , 2014, 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC).

[66]  A. Fell,et al.  A Free and Fast Three-Dimensional/Two-Dimensional Solar Cell Simulator Featuring Conductive Boundary and Quasi-Neutrality Approximations , 2013, IEEE Transactions on Electron Devices.