Accelerated adaptive Perry conjugate gradient algorithms based on the self-scaling memoryless BFGS update

Abstract An accelerated adaptive class of nonlinear conjugate gradient algorithms is suggested. The search direction in these algorithms is given by symmetrization of the scaled Perry conjugate gradient direction (Perry, 1978), which depends on a positive parameter. The value of this parameter is determined by minimizing the distance between the symmetrical scaled Perry conjugate gradient search direction matrix and the self-scaling memoryless BFGS update by Oren in the Frobenius norm. Two variants of the parameter in the search direction are presented as those given by: Oren and Luenberger (1973/74) and Oren and Spedicato (1976). The corresponding algorithm, ACGSSV, is equipped with a very well known acceleration scheme of conjugate gradient algorithms. The global convergence of the algorithm is given both for uniformly convex and general nonlinear functions under the exact or the Wolfe line search. Using a set of 800 unconstrained optimization test problems, of different structure and complexity, we prove that selection of the scaling parameter in self-scaling memoryless BFGS update leads to algorithms which substantially outperform the CG-DESCENT, SCALCG, and CONMIN conjugate gradient algorithms, being more efficient and more robust. However, the conjugate gradient algorithm ADCG based on clustering the eigenvalues of the iteration matrix defined by the search direction is more efficient and slightly more robust than our ACGSSV algorithm. By solving five applications from the MINPACK-2 test problem collection with 10 6 variables, we show that the adaptive Perry conjugate gradient algorithms based on the self-scaling memoryless BFGS update, endowed with the acceleration scheme, is top performer versus CG_DESCENT.

[1]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[2]  Jerrold Bebernes,et al.  Mathematical Problems from Combustion Theory , 1989 .

[3]  Jorge Nocedal Conjugate Gradient Methods and Nonlinear Optimization , 1996 .

[4]  Wufan Chen,et al.  Spectral conjugate gradient methods with sufficient descent property for large-scale unconstrained optimization , 2008, Optim. Methods Softw..

[5]  D. Shanno On the Convergence of a New Conjugate Gradient Algorithm , 1978 .

[6]  W. Hager,et al.  A SURVEY OF NONLINEAR CONJUGATE GRADIENT METHODS , 2005 .

[7]  Jorge Nocedal,et al.  Global Convergence Properties of Conjugate Gradient Methods for Optimization , 1992, SIAM J. Optim..

[8]  Ya-Xiang Yuan,et al.  Optimization theory and methods , 2006 .

[9]  G. Cimatti On a problem of the theory of lubrication governed by a variational inequality , 1976 .

[10]  P. Wolfe Convergence Conditions for Ascent Methods. II , 1969 .

[11]  Guoliang Xue,et al.  The MINPACK-2 test problem collection , 1992 .

[12]  Neculai Andrei,et al.  Eigenvalues versus singular values study in conjugate gradient algorithms for large-scale unconstrained optimization , 2017, Optim. Methods Softw..

[13]  David F. Shanno,et al.  Algorithm 500: Minimization of Unconstrained Multivariate Functions [E4] , 1976, TOMS.

[14]  David F. Shanno,et al.  Remark on “Algorithm 500: Minimization of Unconstrained Multivariate Functions [E4]” , 1980, TOMS.

[15]  Jorge J. Moré,et al.  Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .

[16]  Siam Rfview,et al.  CONVERGENCE CONDITIONS FOR ASCENT METHODS , 2016 .

[17]  Neculai Andrei,et al.  Scaled conjugate gradient algorithms for unconstrained optimization , 2007, Comput. Optim. Appl..

[18]  Neculai Andrei An adaptive conjugate gradient algorithm for large-scale unconstrained optimization , 2016, J. Comput. Appl. Math..

[19]  Ya-Xiang Yuan,et al.  Convergence Properties of Nonlinear Conjugate Gradient Methods , 1999, SIAM J. Optim..

[20]  R. Kohn,et al.  Numerical study of a relaxed variational problem from optimal design , 1986 .

[21]  A. Perry A Modified Conjugate Gradient Algorithm for Unconstrained Nonlinear Optimization , 1975 .

[22]  Neculai Andrei,et al.  An Unconstrained Optimization Test Functions Collection , 2008 .

[23]  R. Glowinski Lectures on Numerical Methods for Non-Linear Variational Problems , 1981 .

[24]  Ya-Xiang Yuan,et al.  Optimization Theory and Methods: Nonlinear Programming , 2010 .

[25]  Saman Babaie-Kafaki,et al.  A note on the global convergence theorem of the scaled conjugate gradient algorithms proposed by Andrei , 2012, Comput. Optim. Appl..

[26]  David F. Shanno Globally convergent conjugate gradient algorithms , 1985, Math. Program..

[27]  P. Wolfe Convergence Conditions for Ascent Methods. II: Some Corrections , 1971 .

[28]  David F. Shanno,et al.  Conjugate Gradient Methods with Inexact Searches , 1978, Math. Oper. Res..

[29]  Saman Babaie-Kafaki A modified scaling parameter for the memoryless BFGS updating formula , 2015, Numerical Algorithms.

[30]  R. Aris The mathematical theory of diffusion and reaction in permeable catalysts. Volume II, Questions of uniqueness, stability, and transient behaviour , 1975 .

[31]  M. J. D. Powell,et al.  Restart procedures for the conjugate gradient method , 1977, Math. Program..

[32]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[33]  D. Luenberger,et al.  Self-Scaling Variable Metric (SSVM) Algorithms , 1974 .

[34]  Carl D. Meyer,et al.  Matrix Analysis and Applied Linear Algebra , 2000 .

[35]  Johannes C. C. Nitsche,et al.  Lectures on minimal surfaces: vol. 1 , 1989 .

[36]  Robert Osserman,et al.  Lectures on Minimal Surfaces. , 1991 .

[37]  L. Liao,et al.  New Conjugacy Conditions and Related Nonlinear Conjugate Gradient Methods , 2001 .

[38]  Duan Li,et al.  On Restart Procedures for the Conjugate Gradient Method , 2004, Numerical Algorithms.

[39]  Neculai Andrei,et al.  Acceleration of conjugate gradient algorithms for unconstrained optimization , 2009, Appl. Math. Comput..

[40]  M. Powell Nonconvex minimization calculations and the conjugate gradient method , 1984 .

[41]  S. Oren SELF-SCALING VARIABLE METRIC (SSVM) ALGORITHMS Part II: Implementation and Experiments*t , 1974 .

[42]  William W. Hager,et al.  Algorithm 851: CG_DESCENT, a conjugate gradient method with guaranteed descent , 2006, TOMS.

[43]  William W. Hager,et al.  A New Conjugate Gradient Method with Guaranteed Descent and an Efficient Line Search , 2005, SIAM J. Optim..

[44]  H. Sherali,et al.  Conjugate gradient methods using quasi-Newton updates with inexact line searches , 1990 .

[45]  Shmuel S. Oren,et al.  Optimal conditioning of self-scaling variable Metric algorithms , 1976, Math. Program..

[46]  Nicholas I. M. Gould,et al.  CUTEr and SifDec: A constrained and unconstrained testing environment, revisited , 2003, TOMS.

[47]  Avinoam Perry,et al.  Technical Note - A Modified Conjugate Gradient Algorithm , 1978, Oper. Res..