Rough Set Approach to Multi-Attribute Choice and Ranking Problems

We propose an original way of applying the rough set theory to the analysis of multi-attribute preference systems in the choice (Pa) and ranking (Py) decision problematics. From the viewpoint of rough set theory, this approach implies to consider a pairwise comparison table, i.e. an information table whose objects are pairs of actions instead of single actions, and whose entries are binary relations instead of attribute values. From the viewpoint of multi-attribute decision methodology, this approach allows both representation of decision maker’s (DM’s) preferences in terms of “if …then…” rules and their use for recommendation in Pa and Py problematics, without assessing such preference parameters as importance weights and substitution rates. The rule representation of DM’s preferences is alternative to traditionally decision support models. The rough set approach to (Pα) and (Pβ) is explained in detail and illustrated by a didactic example.

[1]  Roman Slowinski,et al.  'Roughdas' and 'Roughclass' Software Implementations of the Rough Sets Approach , 1992, Intelligent Decision Support.

[2]  Z. Pawlak,et al.  Rough set approach to multi-attribute decision analysis , 1994 .

[3]  Roman Slowinski,et al.  Rough Set Learning of Preferential Attitude in Multi-Criteria Decision Making , 1993, ISMIS.

[4]  P. Vincke Exploitation of a crisp relation in a ranking problem , 1992 .

[5]  Alexis Tsoukiàs,et al.  A survey on non conventional preference modeling , 1992 .

[6]  P. Slovic Choice Between Equally Valued Alternatives. , 1975 .

[7]  Bernard Roy,et al.  Decision science or decision-aid science? , 1993 .

[8]  M. Schader,et al.  New Approaches in Classification and Data Analysis , 1994 .

[9]  B. Roy Méthodologie multicritère d'aide à la décision , 1985 .

[10]  Z. Pawlak Rough Sets: Theoretical Aspects of Reasoning about Data , 1991 .

[11]  Jerzy W. Grzymala-Busse,et al.  LERS-A System for Learning from Examples Based on Rough Sets , 1992, Intelligent Decision Support.

[12]  Roman Słowiński,et al.  Rough Classification with Valued Closeness Relation , 1994 .

[13]  Roman Słowiński,et al.  Intelligent Decision Support , 1992, Theory and Decision Library.

[14]  Yiyu Yao,et al.  Uncertain Reasoning with Interval-Set Algebra , 1993, RSKD.

[15]  P. Fishburn Methods of Estimating Additive Utilities , 1967 .

[16]  Jerzy W. Grzymala-Busse,et al.  Rough Sets , 1995, Commun. ACM.

[17]  Bernard Roy,et al.  Aide multicritère à la décision : méthodes et cas , 1993 .

[18]  Zbigniew W. Ras,et al.  Methodologies for Intelligent Systems , 1991, Lecture Notes in Computer Science.

[19]  C. J. V. Rijsbergen,et al.  Rough Sets, Fuzzy Sets and Knowledge Discovery , 1994, Workshops in Computing.

[20]  J. Siskos Assessing a set of additive utility functions for multicriteria decision-making , 1982 .

[21]  Zdzislaw Pawlak,et al.  Rough Sets, Rough Relations and Rough Functions , 1996, Fundam. Informaticae.

[22]  A. Tsoukiàs,et al.  A new axiomatic foundation of partial comparability , 1995 .