Diagonalization and Rationalization of algebraic Laurent series

We prove a quantitative version of a result of Furstenberg and Deligne stating that the the diagonal of a multivariate algebraic power series with coefficients in a field of positive characteristic is algebraic. As a consequence, we obtain that for every prime $p$ the reduction modulo $p$ of the diagonal of a multivariate algebraic power series $f$ with integer coefficients is an algebraic power series of degree at most $p^{A}$ and height at most $A^2p^{A+1}$, where $A$ is an effective constant that only depends on the number of variables, the degree of $f$ and the height of $f$. This answers a question raised by Deligne.

[1]  Harm Derksen A Skolem–Mahler–Lech theorem in positive characteristic and finite automata , 2005 .

[2]  M. Waldschmidt Elliptic Functions and Transcendence , 2008 .

[3]  Yves Marie André,et al.  G-functions and geometry , 1989 .

[4]  Richard P. Stanley,et al.  Differentiably Finite Power Series , 1980, Eur. J. Comb..

[5]  L. Lipshitz,et al.  Algebraic power series and diagonals , 1987 .

[6]  Jean-Paul Allouche,et al.  Transcendence of Binomial and Lucas' Formal Power Series☆ , 1998 .

[7]  Harry Furstenberg,et al.  Algebraic functions over finite fields , 1967 .

[8]  Chris F. Woodcock,et al.  On the transcendence of certain series , 1989 .

[9]  David Eisenbud,et al.  Roots of Commutative Algebra , 1995 .

[10]  F. Beukers,et al.  A family of K3 surfaces and ζ(3). , 1984 .

[11]  Takashi Harase,et al.  Algebraic elements in formal power series rings , 1988 .

[12]  Philippe Flajolet,et al.  Analytic Models and Ambiguity of Context-free Languages* , 2022 .

[13]  Bernard Dwork,et al.  An introduction to G-functions , 1994 .

[14]  E. Capelas de Oliveira On generating functions , 1992 .

[15]  W. T. Martin,et al.  Analytic continuation of diagonals and Hadamard compositions of multiple power series , 1938 .

[16]  C. Woodcock,et al.  Algebraic functions over a eld of pos-itive characteristic and Hadamard products , 1988 .

[17]  Takashi Harase,et al.  Algebraic elements in formal power series rings II , 1988 .

[18]  Boris Adamczewski,et al.  On vanishing coefficients of algebraic power series over fields of positive characteristic , 2012 .

[19]  Irrationalit\'e de valeurs de z\^eta (d'apr\`es Ap\'ery, Rivoal, ...) , 2003, math/0303066.

[20]  L. Lipshitz,et al.  The diagonal of a D-finite power series is D-finite , 1988 .

[21]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[22]  Christol Gilles,et al.  Globally bounded solutions of differential equations , 1990 .

[23]  Gilles Christol,et al.  Diagonales de fractions rationnelles et équations différentielles , 1983 .

[24]  S. Fischler Irrationalité de valeurs de zêta (d'après Apéry, Rivoal, ...) , 2003 .

[25]  Jean-Paul Allouche,et al.  Transcendence of Formal Power Series with Rational Coefficients , 1999, Theor. Comput. Sci..

[26]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.

[27]  Peter Roquette,et al.  Einheiten und Divisorklassen in endlich erzeugbaren Körpern. , 1958 .

[28]  Gilles Christol,et al.  Diagonales de fractions rationnelles et équations de Picard-Fuchs , 1985 .

[29]  Michel Waldschmidt,et al.  Transcendence of Periods: The State of the Art , 2006 .

[30]  P. Deligne,et al.  Intégration sur un cycle évanescent , 1984 .