Airborne Laser Scanning - the Status and Perspectives for the Application in the South-East European Forestry

Background and Purpose: Over the last twenty years airborne laser scanning (ALS) technology, also referred to as LiDAR, has been established in a many disciplines as a fully automated and highly efficient method of collecting spatial data. In Croatia, as well as in most countries of the South-East Europe (SEE) with the exception of Slovenia, the research on the application of ALS in forestry has not yet been conducted. Also, regional scientific and professional literature dealing with ALS application is scarce. Therefore, the main goal of this review paper is to present the ALS technology to the forestry community of SEE and to provide an overview of its potential application in forest inventory. The primary focus is given to discrete return ALS systems.

[1]  Emilio Chuvieco,et al.  Estimation of leaf area index and covered ground from airborne laser scanner (Lidar) in two contrasting forests , 2004 .

[2]  K. Itten,et al.  Estimation of LAI and fractional cover from small footprint airborne laser scanning data based on gap fraction , 2006 .

[3]  E. Næsset,et al.  Estimating tree height and tree crown properties using airborne scanning laser in a boreal nature reserve , 2002 .

[4]  Juha Hyyppä,et al.  Forest Inventory Using Small-Footprint Airborne LiDAR , 2008 .

[5]  D. Donoghue,et al.  Remote sensing of species mixtures in conifer plantations using LiDAR height and intensity data , 2007 .

[6]  D. A. Hill,et al.  Combined high-density lidar and multispectral imagery for individual tree crown analysis , 2003 .

[7]  Piermaria Corona,et al.  Airborne Laser Scanning to support forest resource management under alpine, temperate and Mediterranean environments in Italy , 2012 .

[8]  Joanne C. White,et al.  The role of LiDAR in sustainable forest management , 2008 .

[9]  Jan G. P. W. Clevers,et al.  Mapping of aggregated floodplain plant communities using image fusion of CASI and LiDAR data , 2009, Int. J. Appl. Earth Obs. Geoinformation.

[10]  Juha Hyyppä,et al.  Retrieval of Forest Aboveground Biomass and Stem Volume with Airborne Scanning LiDAR , 2013, Remote. Sens..

[11]  Aloysius Wehr,et al.  Airborne laser scanning—an introduction and overview , 1999 .

[12]  Mohammad Bannayan Aval,et al.  Lidar Remote Sensing for Forestry and Terrestrial Applications , 2011 .

[13]  W. Cohen,et al.  Lidar Remote Sensing for Ecosystem Studies , 2002 .

[14]  Peter R. J. North,et al.  Lidar Remote Sensing for Biomass Assessment , 2012 .

[15]  Aivars Lorencs,et al.  Tree Species Identification in Mixed Baltic Forest Using LiDAR and Multispectral Data , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[16]  E. Næsset Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data , 2002 .

[17]  Lorenzo Bruzzone,et al.  Fusion of Hyperspectral and LIDAR Remote Sensing Data for Classification of Complex Forest Areas , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[18]  Jari Vauhkonen,et al.  Estimating crown base height for Scots pine by means of the 3D geometry of airborne laser scanning data , 2010 .

[19]  Eric C. Turnblom,et al.  Tree Species Detection Accuracies Using Discrete Point Lidar and Airborne Waveform Lidar , 2012, Remote. Sens..

[20]  J. Holmgrena,et al.  Large Scale Airborne Laser Scanning of Forest Resources in Sweden , 2004 .

[21]  Renata Pernar,et al.  Procjena strukturnih elemenata sastojine na temelju vrijednosti spektralnog odbijanja IKONOS satelitske snimke , 2011 .

[22]  R. Hill,et al.  Quantifying canopy height underestimation by laser pulse penetration in small-footprint airborne laser scanning data , 2003 .

[23]  E. Næsset Estimating timber volume of forest stands using airborne laser scanner data , 1997 .

[24]  S. Ustin,et al.  Modeling airborne laser scanning data for the spatial generation of critical forest parameters in fire behavior modeling , 2003 .

[25]  Sylvie Durrieu,et al.  Multi-level filtering segmentation to measure individual tree parameters based on Lidar data: Application to a mountainous forest with heterogeneous stands , 2011, Int. J. Appl. Earth Obs. Geoinformation.

[26]  J. Terborgh,et al.  Tree height integrated into pantropical forest biomass estimates , 2012 .

[27]  Emmanuel P. Baltsavias,et al.  Airborne laser scanning: basic relations and formulas , 1999 .

[28]  Juha Hyyppä,et al.  Individual tree detection and area-based approach in retrieval of forest inventory characteristics from low-pulse airborne laser scanning data , 2011 .

[29]  Åsa Persson,et al.  Detecting and measuring individual trees using an airborne laser scanner , 2002 .

[30]  E. Næsset ESTIMATION OF ABOVE-AND BELOW-GROUND BIOMASS IN BOREAL FOREST ECOSYSTEMS , 2004 .

[31]  Sakari Tuominen,et al.  Forest variable estimation using a high-resolution digital surface model , 2012 .

[32]  S. Reutebuch,et al.  A rigorous assessment of tree height measurements obtained using airborne lidar and conventional field methods , 2006 .

[33]  B. Koch,et al.  Detection of individual tree crowns in airborne lidar data , 2006 .

[34]  Maggi Kelly,et al.  A New Method for Segmenting Individual Trees from the Lidar Point Cloud , 2012 .

[35]  Emmanuel P. Baltsavias,et al.  Airborne laser scanning: existing systems and firms and other resources , 1999 .

[36]  Juha Hyyppä,et al.  The accuracy of estimating individual tree variables with airborne laser scanning in a boreal nature reserve , 2004 .

[37]  Emmanuel P. Baltsavias,et al.  A comparison between photogrammetry and laser scanning , 1999 .

[38]  Joanne C. White,et al.  Lidar sampling for large-area forest characterization: A review , 2012 .

[39]  Åsa Persson,et al.  Species identification of individual trees by combining high resolution LiDAR data with multi‐spectral images , 2008 .

[40]  J. Hyyppä,et al.  DETECTING AND ESTIMATING ATTRIBUTES FOR SINGLE TREES USING LASER SCANNER , 2006 .

[41]  P. Gessler,et al.  Automated estimation of individual conifer tree height and crown diameter via two-dimensional spatial wavelet analysis of lidar data , 2006 .

[42]  Hirokazu Yamamoto,et al.  Airborne laser scanning in forest management: individual tree identification and laser pulse penetration in a stand with different levels of thinning. , 2009 .

[43]  K. Omasa,et al.  ESTIMATING CARBON STOCKS OF CONIFEROUS WOODY CANOPY TREES USING AIRBORNE LIDAR AND PASSIVE OPTICAL SENSER , 2009 .

[44]  Francesco Pirotti,et al.  A LiDAR-based approach for a multi-purpose characterization of Alpine forests: an Italian case study , 2013 .

[45]  J. Estornella ESTIMATION OF BIOMASS AND VOLUME OF SHRUB VEGETATION USING LiDAR AND SPECTRAL DATA IN A MEDITERRANEAN ENVIRONMENT , 2015 .

[46]  M. Maltamo,et al.  Estimation of species-specific diameter distributions using airborne laser scanning and aerial photographs , 2008 .

[47]  Juha Hyyppä,et al.  Effects of flight altitude on tree height estimation using airborne laser scanning , 2004 .

[48]  Markus Hollaus,et al.  Comparison of Methods for Estimation of Stem Volume, Stem Number and Basal Area from Airborne Laser Scanning Data in a Hemi-Boreal Forest , 2012, Remote. Sens..

[49]  Kazukiyo Yamamoto,et al.  Estimating individual tree heights of sugi (Cryptomeria japonica D. Don) plantations in mountainous areas using small-footprint airborne LiDAR , 2005, Journal of Forest Research.

[50]  W. Wagner,et al.  3D vegetation mapping using small‐footprint full‐waveform airborne laser scanners , 2008 .

[51]  Forest stand height determination from low point density airborne laser scanning data in Roznava Forest enterprise zone (Slovakia) , 2013 .

[52]  K. Itten,et al.  LIDAR-based geometric reconstruction of boreal type forest stands at single tree level for forest and wildland fire management , 2004 .

[53]  N. Coops,et al.  Estimating canopy structure of Douglas-fir forest stands from discrete-return LiDAR , 2007, Trees.

[54]  Alistair M. S. Smith,et al.  Discrete Return Lidar in Natural Resources: Recommendations for Project Planning, Data Processing, and Deliverables , 2009, Remote. Sens..

[55]  E. Næsset,et al.  Laser scanning of forest resources: the nordic experience , 2004 .

[56]  E. Næsset,et al.  Single Tree Segmentation Using Airborne Laser Scanner Data in a Structurally Heterogeneous Spruce Forest , 2006 .

[57]  M. Nieuwenhuis,et al.  Retrieval of forest structural parameters using LiDAR remote sensing , 2010, European Journal of Forest Research.

[58]  Juha Hyyppä,et al.  An International Comparison of Individual Tree Detection and Extraction Using Airborne Laser Scanning , 2012, Remote. Sens..

[59]  Hans Rudolf Heinimann,et al.  Pre-harvest Assessment based on LiDAR Data , 2012 .

[60]  E. Næsset Determination of mean tree height of forest stands using airborne laser scanner data , 1997 .

[61]  W. Krabill,et al.  Using airborne lasers to estimate forest canopy and stand characteristics. , 1988 .

[62]  M. Maltamo,et al.  ALS-based estimation of plot volume and site index in a eucalyptus plantation with a nonlinear mixed-effect model that accounts for the clone effect , 2011, Annals of Forest Science.

[63]  S. Ustin,et al.  Generation of crown bulk density for Pinus sylvestris L. from lidar , 2004 .

[64]  Reginald R. Souleyrette,et al.  EVALUATION OF LIDAR FOR HIGHWAY PLANNING LOCATION AND DESIGN , 2002 .

[65]  Laura Chasmer,et al.  Investigating laser pulse penetration through a conifer canopy by integrating airborne and terrestrial lidar , 2006 .

[66]  P. Litkey,et al.  INTEGRATION OF LASER SCANNING AND PHOTOGRAMMETRY , 2007 .

[67]  S. Popescu,et al.  Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass , 2003 .

[68]  M. Flood,et al.  LiDAR remote sensing of forest structure , 2003 .

[69]  S. Popescu Estimating biomass of individual pine trees using airborne lidar , 2007 .

[70]  H. Andersen,et al.  Tree species differentiation using intensity data derived from leaf-on and leaf-off airborne laser scanner data , 2009 .

[71]  T. Dawson,et al.  Quantifying forest above ground carbon content using LiDAR remote sensing , 2004 .

[72]  Norbert Pfeifer,et al.  Repetitive interpolation: A robust algorithm for DTM generation from Aerial Laser Scanner Data in forested terrain☆ , 2007 .

[73]  L. Monika Moskal,et al.  Modeling approaches to estimate effective leaf area index from aerial discrete-return LIDAR , 2009 .

[74]  M. Heurich Automatic recognition and measurement of single trees based on data from airborne laser scanning over the richly structured natural forests of the Bavarian Forest National Park , 2008 .

[75]  S. Reutebuch,et al.  Light detection and ranging (LIDAR): an emerging tool for multiple resource inventory. , 2005 .

[76]  Piermaria Corona,et al.  Area-based assessment of forest standing volume by field measurements and airborne laser scanner data , 2009 .

[77]  Eduardo González-Ferreiro,et al.  Estimation of stand variables in Pinus radiata D. Don plantations using different LiDAR pulse densities , 2012 .

[78]  E. Næsset,et al.  Classifying species of individual trees by intensity and structure features derived from airborne laser scanner data , 2009 .

[79]  Mark O. Kimberley,et al.  Airborne scanning LiDAR in a double sampling forest carbon inventory , 2012 .

[80]  Renata Pernar,et al.  Digital Photogrammetry – State of the Art and Potential for Application in Forest Management in Croatia , 2011 .

[81]  Demetrios Gatziolis,et al.  A Guide to LIDAR Data Acquisition and Processing for the Forests of the Pacific Northwest , 2008 .

[82]  Piermaria Corona,et al.  Area-based lidar-assisted estimation of forest standing volume , 2008 .

[83]  Juha Hyyppä,et al.  Comparison of Area-Based and Individual Tree-Based Methods for Predicting Plot-Level Forest Attributes , 2010, Remote. Sens..

[84]  W. Wagner,et al.  Accuracy of large-scale canopy heights derived from LiDAR data under operational constraints in a complex alpine environment , 2006 .

[85]  Juha Hyyppä,et al.  Methods of airborne laser scanning for forest information extraction , 2006 .