Optical design and experimental characterization of a solar concentrating dish system for fuel production via thermochemical redox cycles

Abstract The design, fabrication, and on-sun characterization of a solar dish concentrating system for performing the two-step thermochemical redox splitting of H2O and CO2 is presented. It comprises a primary sun-tracking 4.4 m-dia. solar dish concentrator coupled to a secondary planar rotating reflector. This optical arrangement enables the operation of two (or more) solar reactors side-by-side for performing both redox reactions simultaneously by alternating the solar input between them while making continuous and uninterrupted use of the incoming concentrated sunlight. On-sun characterization of the complete concentrating system revealed a peak solar concentration ratio of 5010 suns and an average of 2710 suns measured over the 30 mm-radius aperture of the solar reactor. A detailed optical analysis elucidates measures to increase the optical efficiency and concentration ratio.

[1]  R. J. Panlener,et al.  A thermodynamic study of nonstoichiometric cerium dioxide , 1975 .

[2]  H. Tan,et al.  Radiation performance of dish solar concentrator/cavity receiver systems , 2008 .

[3]  J. Petrasch A Free and Open Source Monte Carlo Ray Tracing Program for Concentrating Solar Energy Research , 2010 .

[4]  W. Chueh,et al.  High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria , 2010, Science.

[5]  A. Imhof,et al.  Flux Density Distribution in the Focal Region of a Solar Concentrator System , 1991 .

[6]  A. Steinfeld,et al.  Spectroscopic Goniometry System for Determining Thermal Radiative Properties of Participating Media , 2011 .

[7]  R. Winston Light Collection within the Framework of Geometrical Optics , 1970 .

[8]  John Schaefer,et al.  On-sun performance of an improved dish-based HCPV system , 2012, Other Conferences.

[9]  Aldo Steinfeld,et al.  Thermodynamic Analysis of Cerium-Based Oxides for Solar Thermochemical Fuel Production , 2012 .

[10]  I. Reda,et al.  Solar position algorithm for solar radiation applications , 2004 .

[11]  R Winston,et al.  Heat trap: an optimized far infrared field optics system. , 1976, Applied optics.

[12]  Hans Geerlings,et al.  Demonstration of the Entire Production Chain to Renewable Kerosene via Solar Thermochemical Splitting of H2O and CO2 , 2015 .

[13]  Pablo Benitez,et al.  Design in 3D geometry with the simultaneous multiple surface design method of nonimaging optics , 1999, Optics & Photonics.

[14]  Julio Chaves,et al.  Introduction to Nonimaging Optics , 2008 .

[15]  J. A. Jacquez,et al.  THE THEORY OF THE INTEGRATING SPHERE , 1954 .

[16]  Aldo Steinfeld,et al.  Spectral reflectance, transmittance, and angular scattering of materials for solar concentrators , 2016 .

[17]  M. Romero,et al.  Concentrating solar thermal power and thermochemical fuels , 2012 .

[18]  H.William Prengle,et al.  Optical and thermal analysis of a cassegrainian solar concentrator , 1979 .

[19]  Ari Rabl,et al.  Active solar collectors and their applications , 1985 .

[20]  Juan C. Miñano,et al.  New method of design of nonimaging concentrators. , 1992, Applied optics.

[21]  A. Neumann,et al.  Development and Test of a High Flux Calorimeter at DLR Cologne , 1999 .

[22]  R. Bliss Notes on performance design of parabolic solar furnaces , 1957 .

[23]  Aldo Steinfeld,et al.  On-sun optical characterization of a solar dish concentrator based on elliptical vacuum membrane facets , 2017 .

[24]  Stephan Paredes,et al.  A 6-focus high-concentration photovoltaic-thermal dish system , 2017 .

[25]  Eckhard Lüpfert,et al.  Beam Characterization and Improvement with a Flux Mapping System for Dish Concentrators , 2002 .

[26]  Stephanie Meyen,et al.  Parameters and method to evaluate the solar reflectance properties of reflector materials for concentrating solar power technology - Official SolarPACES reflectance guideline verstion 2.5 , 2013 .

[27]  Eckhard Lüpfert,et al.  Slope Error Measurements of Parabolic Troughs Using the Reflected Image of the Absorber Tube , 2009 .