KIF26A Is an Unconventional Kinesin and Regulates GDNF-Ret Signaling in Enteric Neuronal Development

[1]  N. Hirokawa,et al.  KIF1Bβ- and KIF1A-mediated axonal transport of presynaptic regulator Rab3 occurs in a GTP-dependent manner through DENN/MADD , 2008, Nature Cell Biology.

[2]  N. Hirokawa,et al.  Intracellular transport and kinesin superfamily proteins, KIFs: structure, function, and dynamics. , 2008, Physiological reviews.

[3]  V. Pachnis,et al.  Enteric nervous system development and Hirschsprung's disease: advances in genetic and stem cell studies , 2007, Nature Reviews Neuroscience.

[4]  N. Galjart,et al.  Role of CLASP2 in Microtubule Stabilization and the Regulation of Persistent Motility , 2006, Current Biology.

[5]  Yosuke Takei,et al.  KIF4 Motor Regulates Activity-Dependent Neuronal Survival by Suppressing PARP-1 Enzymatic Activity , 2006, Cell.

[6]  A. Yoshimura,et al.  Loss of mammalian Sprouty2 leads to enteric neuronal hyperplasia and esophageal achalasia , 2005, Nature Neuroscience.

[7]  Nobutaka Hirokawa,et al.  Molecular motors and mechanisms of directional transport in neurons , 2005, Nature Reviews Neuroscience.

[8]  Russell L. Malmberg,et al.  A standardized kinesin nomenclature , 2004, The Journal of cell biology.

[9]  Y. von Boxberg,et al.  Microtubule-Associated Protein 1B Controls Directionality of Growth Cone Migration and Axonal Branching in Regeneration of Adult Dorsal Root Ganglia Neurons , 2004, The Journal of Neuroscience.

[10]  Ryo Nitta,et al.  KIF1A Alternately Uses Two Loops to Bind Microtubules , 2004, Science.

[11]  E. Ekblad,et al.  Increased expression of vasoactive intestinal polypeptide in cultured myenteric neurons from adult rat small intestine , 2003, Autonomic Neuroscience.

[12]  E. Nishida,et al.  Sprouty1 and Sprouty2 provide a control mechanism for the Ras/MAPK signalling pathway , 2002, Nature Cell Biology.

[13]  N. Hirokawa,et al.  MAP2 is required for dendrite elongation, PKA anchoring in dendrites, and proper PKA signal transduction , 2002, The Journal of cell biology.

[14]  Masahide Takahashi,et al.  Novel Mechanism of Regulation of Rac Activity and Lamellipodia Formation by RET Tyrosine Kinase* , 2002, The Journal of Biological Chemistry.

[15]  M. Katsuki,et al.  K‐Ras mediates cytokine‐induced formation of E‐cadherin‐based adherens junctions during liver development , 2002, The EMBO journal.

[16]  M. Takahashi,et al.  The GDNF/RET signaling pathway and human diseases. , 2001, Cytokine & growth factor reviews.

[17]  N. Hirokawa,et al.  All kinesin superfamily protein, KIF, genes in mouse and human , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[18]  M. Epstein,et al.  Enteric neuroblasts require the phosphatidylinositol 3-kinase pathway for GDNF-stimulated proliferation. , 2001, Journal of neurobiology.

[19]  R. Scott,et al.  Signaling Complexes and Protein-Protein Interactions Involved in the Activation of the Ras and Phosphatidylinositol 3-Kinase Pathways by the c-Ret Receptor Tyrosine Kinase* , 2000, The Journal of Biological Chemistry.

[20]  M. Ichihara,et al.  Characterization of intracellular signals via tyrosine 1062 in RET activated by glial cell line-derived neurotrophic factor , 2000, Oncogene.

[21]  M. Billaud,et al.  Transforming Ability of MEN2A-RET Requires Activation of the Phosphatidylinositol 3-Kinase/AKT Signaling Pathway* , 2000, The Journal of Biological Chemistry.

[22]  I. Fariñas,et al.  GFRα1 Is an Essential Receptor Component for GDNF in the Developing Nervous System and Kidney , 1998, Neuron.

[23]  N. Asai,et al.  Characterization of Ret-Shc-Grb2 complex induced by GDNF, MEN 2A, and MEN 2B mutations. , 1997, Biochemical and biophysical research communications.

[24]  Ronald D Vale,et al.  Microtubule Interaction Site of the Kinesin Motor , 1997, Cell.

[25]  Jonas Frisén,et al.  Renal agenesis and the absence of enteric neurons in mice lacking GDNF , 1996, Nature.

[26]  I. Fariñas,et al.  Renal and neuronal abnormalities in mice lacking GDNF , 1996, Nature.

[27]  Mart Saarma,et al.  Defects in enteric innervation and kidney development in mice lacking GDNF , 1996, Nature.

[28]  N. Hirokawa,et al.  Point mutation of adenosine triphosphate-binding motif generated rigor kinesin that selectively blocks anterograde lysosome membrane transport , 1995, The Journal of cell biology.

[29]  D. Cussac,et al.  The Grb2 adaptor , 1995, FEBS letters.

[30]  N. Hirokawa,et al.  KIF3A is a new microtubule-based anterograde motor in the nerve axon , 1994, The Journal of cell biology.

[31]  N. Hirokawa Microtubule organization and dynamics dependent on microtubule-associated proteins. , 1994, Current opinion in cell biology.

[32]  Frank Costantini,et al.  Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret , 1994, Nature.

[33]  R. Hofstra,et al.  A mutation in the RET proto-oncogene associated with multiple endocrine neoplasia type 2B and sporadic medullary thyroid carcinoma , 1994, Nature.

[34]  N. Hirokawa,et al.  Increased microtubule stability and alpha tubulin acetylation in cells transfected with microtubule-associated proteins MAP1B, MAP2 or tau. , 1992, Journal of cell science.

[35]  T. Takenawa,et al.  Highly conserved eight amino acid sequence in SH2 is important for recognition of phosphotyrosine site. , 1991, Biochemical and biophysical research communications.

[36]  D. Drake,et al.  Hyperganglionosis mimicking Hirschsprung's disease. , 1991, Archives of disease in childhood.

[37]  N. Hirokawa,et al.  Expression of multiple tau isoforms and microtubule bundle formation in fibroblasts transfected with a single tau cDNA , 1989, The Journal of cell biology.

[38]  Carney Ja,et al.  Alimentary tract manifestations of multiple endocrine neoplasia, type 2b. , 1977 .

[39]  John M. Walker,et al.  Molecular Motors , 2007, Methods in Molecular Biology™.

[40]  J. Carney,et al.  Alimentary tract manifestations of multiple endocrine neoplasia, type 2b. , 1977, Mayo Clinic proceedings.