Convergency of Learning Process

This paper presents a learning process analysis on stability of learning in light of iterated belief revision. We view a learning process as a sequential belief change procedure. A learning policy is sought to guarantee every learning process leads to a complete knowledge about the world if the newly accepted information is the true fact on the world. The policy allows an agent to abandon the knowledge it has learned but requires a relatively moderate attitude to new information. It is shown that if new information is not always accepted in an extremely skeptical attitude and the changes of belief degrees follow the criterion of minimal change, any learning process for learning truth will converge to a complete knowledge state.

[1]  Mariano Méndez Belief revision by sets of sentences , 1996 .

[2]  Daniel Lehmann,et al.  Belief Revision, Revised , 1995, IJCAI.

[3]  Wei Li,et al.  Open logic based on total-ordered partition model , 1998 .

[4]  PETER GÄRDENFORS,et al.  Belief Revision: Belief revision: An introduction , 2003 .

[5]  Wolfgang Spohn,et al.  Ordinal Conditional Functions: A Dynamic Theory of Epistemic States , 1988 .

[6]  Craig Boutilier,et al.  Iterated revision and minimal change of conditional beliefs , 1996, J. Philos. Log..

[7]  Bernhard Nebel,et al.  Belief Revision: Syntax based approaches to belief revision , 1992 .

[8]  Dongmo Zhang,et al.  Representation Theorems for Multiple Belief Changes , 1997, IJCAI.

[9]  Kevin T. Kelly Iterated Belief Revision, Reliability, and Inductive Amnesia , 1999 .

[10]  Judea Pearl,et al.  On the Logic of Iterated Belief Revision , 1994, Artif. Intell..

[11]  Judea Pearl,et al.  Qualitative Probabilities for Default Reasoning, Belief Revision, and Causal Modeling , 1996, Artif. Intell..

[12]  Abhaya C. Nayak,et al.  Iterated belief change based on epistemic entrenchment , 1994 .

[13]  Kevin T. Kelly The Learning Power of Belief Revision , 1998, TARK.

[14]  H. Kyburg Iterated Belief Change Based on Epistemic Entrenchment* , 1994 .

[15]  J. Pearl,et al.  On the Logic of Iterated Belief Revision , 1994, Artif. Intell..

[16]  P G rdenfors,et al.  Knowledge in flux: modeling the dynamics of epistemic states , 1988 .

[17]  Norman Y. Foo,et al.  Infinitary Belief Revision , 2001, J. Philos. Log..

[18]  Peter Gärdenfors,et al.  Belief Revision , 1995 .

[19]  Peter Gärdenfors,et al.  On the logic of theory change: Partial meet contraction and revision functions , 1985, Journal of Symbolic Logic.

[20]  Peter Gärdenfors,et al.  Belief Revision: Contents , 1992 .

[21]  Daniel N. Osherson,et al.  Elements of Scientific Inquiry , 1998 .

[22]  Wei Li A Logical Framework for Evolution of Specifications , 1994, ESOP.

[23]  Daniel N. Osherson,et al.  Scientific Discovery on Positive Data via Belief Revision , 2000, J. Philos. Log..

[24]  Craig Boutilier,et al.  Revision Sequences and Nested Conditionals , 1993, IJCAI.

[25]  Mary-Anne Williams,et al.  Iterated Theory Base Change: A Computational Model , 1995, IJCAI.