Equivariant log concavity and representation stability

We expand upon the notion of equivariant log concavity, and make equivariant log concavity conjectures for Orlik–Solomon algebras of matroids, Cordovil algebras of oriented matroids, and Orlik–Terao algebras of hyperplane arrangements. In the case of the Coxeter arrangement for the Lie algebra sln, we exploit the theory of representation stability to give computer assisted proofs of these conjectures in low degree.

[1]  Representation stability for homotopy groups of configuration spaces , 2014, 1410.2328.

[2]  Carsten Schultz,et al.  The cohomology rings of complements of subspace arrangements , 2001 .

[3]  Benjamin Young,et al.  The Orlik-Terao Algebra and the Cohomology of Configuration Space , 2016, Experimental Mathematics.

[4]  Karim A. Adiprasito,et al.  Hodge theory for combinatorial geometries , 2015, Annals of Mathematics.

[5]  V. Reiner,et al.  On configuration spaces and Whitehouse's lifts of the Eulerian representations , 2018, Journal of Pure and Applied Algebra.

[6]  Daniel Moseley Equivariant cohomology and the Varchenko-Gelfand filtration , 2011, 1110.5369.

[7]  Raul Cordovil,et al.  A Commutative Algebra for Oriented Matroids , 2002, Discret. Comput. Geom..

[8]  Emmanuel Briand,et al.  The stability of the Kronecker product of Schur functions , 2010 .

[9]  P. Orlik,et al.  Combinatorics and topology of complements of hyperplanes , 1980 .

[10]  Vladimir A. Smirnov,et al.  The homology of iterated loop spaces , 2000 .

[12]  N. Proudfoot,et al.  The hypertoric intersection cohomology ring , 2008, 0802.0641.

[13]  Benjamin Young,et al.  The equivariant Kazhdan-Lusztig polynomial of a matroid , 2016, J. Comb. Theory, Ser. A.

[14]  Stefan O. Tohaneanu,et al.  The Orlik-Terao algebra and 2-formality , 2009, 0901.0253.

[15]  S. Yuzvinsky,et al.  Orlik-Solomon algebras in algebra and topology , 2001 .

[16]  Jordan S. Ellenberg,et al.  FI-modules and stability for representations of symmetric groups , 2012, 1204.4533.