Hemizygous minipigs produced by random gene insertion and handmade cloning express the Alzheimer’s disease-causing dominant mutation APPsw

[1]  David K. Meyerholz,et al.  Disruption of the CFTR Gene Produces a Model of Cystic Fibrosis in Newborn Pigs , 2008, Science.

[2]  M. Welsh,et al.  Production of CFTR-null and CFTR-DeltaF508 heterozygous pigs by adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer. , 2008, The Journal of clinical investigation.

[3]  T. Jensen,et al.  Regulatory mechanisms for 3′-end alternative splicing and polyadenylation of the Glial Fibrillary Acidic Protein, GFAP, transcript , 2007, Nucleic acids research.

[4]  L. Bolund,et al.  Piglets born from handmade cloning, an innovative cloning method without micromanipulation. , 2007, Theriogenology.

[5]  G. Vajta Handmade cloning: the future way of nuclear transfer? , 2007, Trends in biotechnology.

[6]  P. Manger,et al.  Order‐specific quantitative patterns of cortical gyrification , 2007, The European journal of neuroscience.

[7]  M. Groenen,et al.  Genetic Resources, Genome Mapping and Evolutionary Genomics of the Pig (Sus scrofa) , 2007, International journal of biological sciences.

[8]  Alessandro Vullo,et al.  Distill: A Machine Learning Approach to Ab Initio Protein Structure Prediction , 2007, Analysis of Biological Data: A Soft Computing Approach.

[9]  C. Bendixen,et al.  Porcine APP cDNAs: molecular cloning and characterization, expression analysis, chromosomal localization and SNP analysis. , 2006, Biochimica et biophysica acta.

[10]  C. Julier,et al.  Mutations in GLIS3 are responsible for a rare syndrome with neonatal diabetes mellitus and congenital hypothyroidism , 2006, Nature Genetics.

[11]  Jason Eriksen,et al.  A decade of modeling Alzheimer's disease in transgenic mice. , 2006, Trends in genetics : TIG.

[12]  Jacob Jelsing,et al.  The postnatal development of neocortical neurons and glial cells in the Göttingen minipig and the domestic pig brain , 2006, Journal of Experimental Biology.

[13]  T. Starzl,et al.  Generation of cloned transgenic pigs rich in omega-3 fatty acids , 2006, Nature Biotechnology.

[14]  L. Bolund,et al.  High overall in vitro efficiency of porcine handmade cloning (HMC) combining partial zona digestion and oocyte trisection with sequential culture. , 2005, Cloning and stem cells.

[15]  K. Smetana,et al.  The Miniature Pig as an Animal Model in Biomedical Research , 2005, Annals of the New York Academy of Sciences.

[16]  B. Pakkenberg,et al.  A volumetric screening procedure for the Göttingen minipig brain , 2005, Experimental Brain Research.

[17]  J. Trojanowski,et al.  Long-Term Accumulation of Amyloid-β, β-Secretase, Presenilin-1, and Caspase-3 in Damaged Axons Following Brain Trauma , 2004 .

[18]  L. Bolund,et al.  Production of transgenic porcine blastocysts by hand-made cloning , 2004 .

[19]  W R Douglas,et al.  Of pigs and men and research , 1972, Space life sciences.

[20]  J. Trojanowski,et al.  Long-term accumulation of amyloid-beta, beta-secretase, presenilin-1, and caspase-3 in damaged axons following brain trauma. , 2004, The American journal of pathology.

[21]  M. Mattson,et al.  Triple-Transgenic Model of Alzheimer's Disease with Plaques and Tangles Intracellular Aβ and Synaptic Dysfunction , 2003, Neuron.

[22]  G. Vajta,et al.  Handmade Somatic Cell Cloning in Cattle: Analysis of Factors Contributing to High Efficiency In Vitro1 , 2003, Biology of reproduction.

[23]  J. Hardy,et al.  The Amyloid Hypothesis of Alzheimer ’ s Disease : Progress and Problems on the Road to Therapeutics , 2009 .

[24]  C. Blake Amyloid Precursor Protein , 2002 .

[25]  Kwang-Wook Park,et al.  Production of α-1,3-Galactosyltransferase Knockout Pigs by Nuclear Transfer Cloning , 2002, Science.

[26]  K. Yoshioka,et al.  Birth of Piglets Derived from Porcine Zygotes Cultured in a Chemically Defined Medium1 , 2002, Biology of reproduction.

[27]  Flemming Andersen,et al.  MR-Based Statistical Atlas of the Göttingen Minipig Brain , 2001, NeuroImage.

[28]  G. Vajta,et al.  Somatic cell cloning without micromanipulators. , 2001, Cloning.

[29]  M. Pfister-Genskow,et al.  Production of cloned pigs from in vitro systems , 2000, Nature Biotechnology.

[30]  Yifan Dai,et al.  Cloned pigs produced by nuclear transfer from adult somatic cells , 2000, Nature.

[31]  A Onishi,et al.  Pig cloning by microinjection of fetal fibroblast nuclei. , 2000, Science.

[32]  Wen-Lang Lin,et al.  Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein , 2000, Nature Genetics.

[33]  B. Hyman,et al.  Age-related amyloid beta deposition in transgenic mice overexpressing both Alzheimer mutant presenilin 1 and amyloid beta precursor protein Swedish mutant is not associated with global neuronal loss. , 2000, The American journal of pathology.

[34]  W. Pond,et al.  Perinatal Ontogeny of Brain Growth in the Domestic Pig (44469) , 2000 .

[35]  W. Pond,et al.  Perinatal ontogeny of brain growth in the domestic pig. , 2000, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.

[36]  J Q Trojanowski,et al.  Accumulation of amyloid beta and tau and the formation of neurofilament inclusions following diffuse brain injury in the pig. , 1999, Journal of neuropathology and experimental neurology.

[37]  D. Borchelt,et al.  Accelerated Amyloid Deposition in the Brains of Transgenic Mice Coexpressing Mutant Presenilin 1 and Amyloid Precursor Proteins , 1997, Neuron.

[38]  R. Motter,et al.  Amyloid precursor protein processing and Aβ42 deposition in a transgenic mouse model of Alzheimer disease , 1997 .

[39]  L. Alexander,et al.  Cloning and characterization of 414 polymorphic porcine microsatellites. , 2009, Animal genetics.

[40]  S. Younkin,et al.  Correlative Memory Deficits, Aβ Elevation, and Amyloid Plaques in Transgenic Mice , 1996, Science.

[41]  G. Schellenberg,et al.  Secreted amyloid β–protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease , 1996, Nature Medicine.

[42]  L. Mucke,et al.  Levels and Alternative Splicing of Amyloid β Protein Precursor (APP) Transcripts in Brains of APP Transgenic Mice and Humans with Alzheimer's Disease (*) , 1995, The Journal of Biological Chemistry.

[43]  B. Hyman,et al.  Neuropathological changes in Down's syndrome hippocampal formation. Effect of age and apolipoprotein E genotype. , 1995, Archives of neurology.

[44]  L. Mucke,et al.  Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein , 1995, Nature.

[45]  M J West,et al.  Hippocampus of the domestic pig: A stereological study of subdivisional volumes and neuron numbers , 1994, Hippocampus.

[46]  L. Alexander,et al.  A microsatellite linkage map of the porcine genome. , 1994, Genetics.

[47]  B. Winblad,et al.  A pathogenic mutation for probable Alzheimer's disease in the APP gene at the N–terminus of β–amyloid , 1992, Nature Genetics.

[48]  D. Bonthron,et al.  PDGF B-chain in neurons of the central nervous system, posterior pituitary, and in a transgenic model , 1991, Cell.

[49]  R. Neve,et al.  Expression of the Alzheimer amyloid precursor gene transcripts in the human brain , 1988, Neuron.

[50]  S. Book,et al.  The fetal and neonatal pig in biomedical research. , 1974, Journal of animal science.