GA optimized time delayed feedback control of chaos in a memristor based chaotic circuit

Chaotic state of a nonlinear system may be harmful due to its extreme sensitivity to initial conditions and irregularity in behavior. This paper addresses the problem of controlling chaos in a memristor based chaotic circuit using time delayed feedback method. Genetic algorithm has been used as a search tool to optimize the feedback path gain. Extensive computer simulations demonstrate that successful chaos control can be achieved by using this scheme, leading the system's chaotic state towards a fixed point or sustained oscillations depending on the range of feedback gain values.

[1]  Leon O. Chua,et al.  Memristor Cellular Automata and Memristor Discrete-Time Cellular Neural Networks , 2009, Int. J. Bifurc. Chaos.

[2]  Akhil Garg,et al.  A modified multi-gene genetic programming approach for modelling true stress of dynamic strain aging regime of austenitic stainless steel 304 , 2014 .

[3]  Edward Ott,et al.  Controlling chaos , 2006, Scholarpedia.

[4]  Hongbin Zhang,et al.  Controlling chaos in a memristor-based Chua's circuit , 2009, 2009 International Conference on Communications, Circuits and Systems.

[5]  Victor Sreeram,et al.  Controlling Chaos in a Memristor Based Circuit Using a Twin-T Notch Filter , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[6]  Goldhirsch,et al.  Taming chaotic dynamics with weak periodic perturbations. , 1991, Physical review letters.

[7]  D. E. Goldberg,et al.  Genetic Algorithms in Search, Optimization & Machine Learning , 1989 .

[8]  C.S. Ozveren,et al.  A review of the use of genetic algorithms in economic load dispatch , 2008, 2008 43rd International Universities Power Engineering Conference.

[9]  Dressler,et al.  Controlling chaos using time delay coordinates. , 1992, Physical review letters.

[10]  L. Chua Memristor-The missing circuit element , 1971 .

[11]  Kestutis Pyragas,et al.  Delayed feedback control of chaos , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[12]  Lima,et al.  Suppression of chaos by resonant parametric perturbations. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[13]  Ankit Garg,et al.  An integrated SRM-multi-gene genetic programming approach for prediction of factor of safety of 3-D soil nailed slopes , 2014, Eng. Appl. Artif. Intell..

[14]  Bharathwaj Muthuswamy,et al.  Memristor-Based Chaotic Circuits , 2009 .

[15]  Melanie Mitchell,et al.  An introduction to genetic algorithms , 1996 .

[16]  Murat Uzam,et al.  Economic dispatch solution using a genetic algorithm based on arithmetic crossover , 2001, 2001 IEEE Porto Power Tech Proceedings (Cat. No.01EX502).

[17]  Ankit Garg,et al.  A multi-gene genetic programming model for estimating stress-dependent soil water retention curves , 2014, Computational Geosciences.

[18]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[19]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[20]  Alexander N. Pisarchik,et al.  Using periodic modulation to control coexisting attractors induced by delayed feedback , 2003 .

[21]  S. Boccaletti,et al.  The control of chaos: theory and applications , 2000 .

[22]  Leon O. Chua,et al.  MEMRISTOR CELLULAR AUTOMATA AND MEMRISTOR DISCRETE-TIME CELLULAR NEURAL NETWORKS , 2009 .

[23]  Singer,et al.  Controlling a chaotic system. , 1991, Physical review letters.