Copulas and Copula Models

This entry introduces the notion of copula, reviews classical copula models, and describes their main properties. The entry also presents rank-based estimation procedures and goodness-of-fit tests for copula modeling. Keywords: Archimedean; dependence concept; empirical copula; comonotonicity; extreme-value; Frechet--Hoeffding bounds; goodness-of-fit test; Kendall distribution; Kendall's tau; meta-elliptical; moment-based estimator; pair-copula; pseudo-likelihood; pseudo-observations; probability integral transform; rank-based inference; Sklar's representation; Spearman's rho; stochastic ordering; tail dependence coefficient; vine

[1]  B. Rémillard,et al.  Validity of the parametric bootstrap for goodness-of-fit testing in semiparametric models , 2005 .

[2]  H. Joe Asymptotic efficiency of the two-stage estimation method for copula-based models , 2005 .

[3]  C. Genest,et al.  The Advent of Copulas in Finance , 2009 .

[4]  P. Gaenssler,et al.  Seminar on Empirical Processes , 1987 .

[5]  M. Wegkamp,et al.  Weak Convergence of Empirical Copula Processes , 2004 .

[6]  C. Genest,et al.  On blest's measure of rank correlation , 2003 .

[7]  C. Genest,et al.  A semiparametric estimation procedure of dependence parameters in multivariate families of distributions , 1995 .

[8]  Christian Genest,et al.  Estimating copula densities through wavelets , 2009 .

[9]  P. Embrechts,et al.  Risk Management: Correlation and Dependence in Risk Management: Properties and Pitfalls , 2002 .

[10]  B. Rémillard,et al.  Goodness-of-fit tests for copulas: A review and a power study , 2006 .

[11]  H. Joe Multivariate models and dependence concepts , 1998 .

[12]  C. Genest,et al.  Inference in multivariate Archimedean copula models , 2011 .

[13]  Daniel Berg,et al.  Local Power Analyses of Goodness‐of‐fit Tests for Copulas , 2009 .

[14]  Harry Joe,et al.  Multivariate dependence measures and data analysis , 1993 .

[15]  C. Genest,et al.  A characterization of gumbel's family of extreme value distributions , 1989 .

[16]  Piotr Mikusiński,et al.  Strong Approximation of Copulas , 1998 .

[17]  Bruno Rémillard,et al.  Dependence Properties of Meta-Elliptical Distributions , 2005 .

[18]  Eckhard Liebscher,et al.  Construction of asymmetric multivariate copulas , 2008 .

[19]  Christian Genest,et al.  Copules archimédiennes et families de lois bidimensionnelles dont les marges sont données , 1986 .

[20]  Christian Genest,et al.  On the multivariate probability integral transformation , 2001 .

[21]  Alexander J. McNeil,et al.  From Archimedean to Liouville copulas , 2010, J. Multivar. Anal..

[22]  A. Müller,et al.  Comparison Methods for Stochastic Models and Risks , 2002 .

[23]  José Juan Quesada-Molina,et al.  Kendall distribution functions , 2003 .

[24]  Bruno Rémillard,et al.  Goodness‐of‐fit Procedures for Copula Models Based on the Probability Integral Transformation , 2006 .

[25]  H. Tsukahara,et al.  Semiparametric estimation in copula models , 2005 .

[26]  Martin T. Wells,et al.  Model Selection and Semiparametric Inference for Bivariate Failure-Time Data , 2000 .

[27]  J. Shih,et al.  A goodness-of-fit test for association in a bivariate survival model , 1998 .

[28]  Xiaohong Chen,et al.  Efficient Estimation of Semiparametric Multivariate Copula Models Efficient Estimation of Semiparametric Multivariate Copula Models * , 2004 .

[29]  C. Genest,et al.  A Primer on Copulas for Count Data , 2007, ASTIN Bulletin.

[30]  I. Gijbels,et al.  Improved kernel estimation of copulas: Weak convergence and goodness-of-fit testing , 2009, 0908.4530.

[31]  Kilani Ghoudi,et al.  Propriétés statistiques des copules de valeurs extrêmes bidimensionnelles , 1998 .

[32]  Daniel Berg Copula goodness-of-fit testing: an overview and power comparison , 2009 .

[33]  K. Tribouley,et al.  A goodness-of-fit test for copula densities , 2011 .

[34]  Friedrich Schmid,et al.  Multivariate Extensions of Spearman's Rho and Related Statistics , 2007 .

[35]  A. Frigessi,et al.  Pair-copula constructions of multiple dependence , 2009 .

[36]  Paul Embrechts,et al.  Quantitative Risk Management , 2011, International Encyclopedia of Statistical Science.

[37]  T. Bedford,et al.  Vines: A new graphical model for dependent random variables , 2002 .

[38]  Simon Guillotte,et al.  Nonparametric Bayesian Estimation of a Bivariate Copula Using the Jeffreys Prior , 2009, 0908.2372.

[39]  Olivier Scaillet,et al.  Kernel Based Goodness-of-Fit Test for Copulas with Fixed Smoothing Parameters , 2005 .

[40]  S. Kotz,et al.  Symmetric Multivariate and Related Distributions , 1989 .

[41]  J. Segers Asymptotics of empirical copula processes under non-restrictive smoothness assumptions , 2010, 1012.2133.

[42]  A. McNeil,et al.  The t Copula and Related Copulas , 2005 .

[43]  Christian Genest,et al.  Spearman's ρ is larger than kendall's τ for positively dependent random variables , 1993 .

[44]  Yannick Malevergne,et al.  Testing the Gaussian copula hypothesis for financial assets dependences , 2001, cond-mat/0111310.

[45]  Johanna Nešlehová,et al.  On rank correlation measures for non-continuous random variables , 2007 .

[46]  C. Genest,et al.  Everything You Always Wanted to Know about Copula Modeling but Were Afraid to Ask , 2007 .

[47]  Bruno Rémillard,et al.  On Kendall's Process , 1996 .

[48]  Alexander J. McNeil,et al.  Multivariate Archimedean copulas, $d$-monotone functions and $\ell_1$-norm symmetric distributions , 2009, 0908.3750.

[49]  Kjersti Aas,et al.  On the simplified pair-copula construction - Simply useful or too simplistic? , 2010, J. Multivar. Anal..

[50]  C. Genest,et al.  Detecting Dependence With Kendall Plots , 2003 .

[51]  E. Lehmann Some Concepts of Dependence , 1966 .

[52]  I. Olkin,et al.  Families of Multivariate Distributions , 1988 .

[53]  C. Klaassen,et al.  Efficient estimation in the bivariate normal copula model: normal margins are least favourable , 1997 .

[54]  Christian Genest,et al.  Tests of symmetry for bivariate copulas , 2011, Annals of the Institute of Statistical Mathematics.

[55]  Olivier Scaillet,et al.  Testing for Equality between Two Copulas , 2006, J. Multivar. Anal..

[56]  Johan Segers,et al.  On the covariance of the asymptotic empirical copula process , 2010, J. Multivar. Anal..

[57]  W. R. Schucany,et al.  Correlation structure in Farlie-Gumbel-Morgenstern distributions , 1978 .

[58]  C. Genest,et al.  ESTIMATORS BASED ON KENDALL'S TAU IN MULTIVARIATE COPULA MODELS , 2011 .

[59]  Craig B. Borkowf,et al.  Computing the nonnull asymptotic variance and the asymptotic relative efficiency of Spearman's rank correlation , 2002 .

[60]  Jun Yan,et al.  FAST LARGE-SAMPLE GOODNESS-OF-FIT TESTS FOR COPULAS , 2011 .

[61]  Emiliano A. Valdez,et al.  Understanding Relationships Using Copulas , 1998 .

[62]  Gabriel Frahm On the extremal dependence coefficient of multivariate distributions , 2006 .

[63]  Gunky Kim,et al.  Comparison of semiparametric and parametric methods for estimating copulas , 2007, Comput. Stat. Data Anal..

[64]  S. Kotz,et al.  The Meta-elliptical Distributions with Given Marginals , 2002 .

[65]  Christian Genest,et al.  Conditions for the Asymptotic Semiparametric Efficiency of an Omnibus Estimator of Dependence Parame , 2000 .

[66]  Carlo De Michele,et al.  Extremes in Nature : an approach using Copulas , 2007 .

[67]  Ludger Rüschendorf,et al.  Asymptotic Distributions of Multivariate Rank Order Statistics , 1976 .

[68]  Tomasz Kulpa,et al.  On approximation of copulas , 1999 .

[69]  T. Louis,et al.  Inferences on the association parameter in copula models for bivariate survival data. , 1995, Biometrics.