Polarization independent broadband terahertz antireflection by deep‐subwavelength thin metallic mesh

Broadband antireflection coatings for passive terahertz (THz) components are extremely important in the application of THz technology. Metallic nano-films are commonly used for this purpose. Here a new approach to realize polarization independent broadband antireflection in THz range, based on a meta-surface design is experimentally demonstrated. The internal reflection of a broadband THz pulse (spectral bandwidth of 0.06 – 4 THz) at a Si/air interface can be fully suppressed with a Cr square mesh with deep-subwavelength dimensions. Small nonuniformity of the meta-surface structure can enhance the tolerance on structural parameters for achieving the AR condition. The design concept is applicable to other metals and frequency ranges as well, which opens a new window for future AR coatings.

[1]  Penghui Zhao,et al.  Graphene as broadband terahertz antireflection coating , 2014 .

[2]  Hanspeter Helm,et al.  Nanostructured gold films as broadband terahertz antireflection coatings , 2008 .

[3]  Peter H. Siegel,et al.  THz Technology: An Overview , 2003 .

[4]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[5]  K. Unterrainer,et al.  Metallic wave-impedance matching layers for broadband terahertz optical systems. , 2007, Optics express.

[6]  M. Tonouchi,et al.  Perfect Broadband Terahertz Antireflection by Deep‐Subwavelength, Thin, Lamellar Metallic Gratings , 2013 .

[7]  K. Unterrainer,et al.  High-performance terahertz electro-optic detector , 2004 .

[8]  Q. Wen,et al.  Bilayer metallic nanofilms as broadband antireflection coatings in terahertz optical systems. , 2014, Optics express.

[9]  D. Grischkowsky,et al.  Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon , 2004 .

[10]  Klaus Fuchs,et al.  The conductivity of thin metallic films according to the electron theory of metals , 1938, Mathematical Proceedings of the Cambridge Philosophical Society.

[11]  Yong-hee Lee,et al.  A terahertz metamaterial with unnaturally high refractive index , 2011, Nature.

[12]  E. H. Sondheimer,et al.  The mean free path of electrons in metals , 1952 .

[13]  H. Hoffmann,et al.  Mean free path and density of conductance electrons in platinum determined by the size effect in extremely thin films , 1980 .

[14]  H. Hoffmann,et al.  Critical assessment of thickness-dependent conductivity of thin metal films , 1981 .

[15]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[16]  Y. Namba,et al.  Resistivity and Temperature Coefficient of Thin Metal Films with Rough Surface , 1970 .

[17]  M. Nuss,et al.  Imaging with terahertz waves. , 1995, Optics letters.

[18]  U. Chettiar,et al.  Negative index of refraction in optical metamaterials. , 2005, Optics letters.

[19]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[20]  P. Taday,et al.  Detection and identification of explosives using terahertz pulsed spectroscopic imaging , 2005 .

[21]  D. Whittaker,et al.  Scattering-matrix treatment of patterned multilayer photonic structures , 1999 .

[22]  K. Malloy,et al.  Experimental demonstration of near-infrared negative-index metamaterials. , 2005, Physical review letters.

[23]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[24]  J. O’Hara,et al.  Antireflection coating using metamaterials and identification of its mechanism. , 2010, Physical review letters.

[25]  Remo Proietti Zaccaria,et al.  Tunable Fano resonance in photonic crystal slabs. , 2006, Optics express.