Taming epidemic outbreaks in mobile adhoc networks

The openness of the smartphone operating systems has increased the number of applications developed, but it has also introduced a new propagation vector for mobile malware. We model the propagation of mobile malware among humans carrying smartphones using epidemiology theory and study the problem as a function of the underlying mobility models. We define the optimal approach to heal an infected system with the help of a set of static healers that distribute patches as the T-Cover problem, which is NP-COMPLETE. We then propose three families of healer protocols that allow for a trade-off between the recovery time and the energy consumed for deploying patches. We show through simulations using the NS-3 simulator that despite lacking knowledge of the exact future, our healers obtain a recovery time within a 7.4×~10× bound of the oracle solution that has knowledge of the future arrival time of all the infected nodes.

[1]  Cristina Nita-Rotaru,et al.  Pandora: a platform for worm simulations in mobile ad-hoc networks , 2010, MOCO.

[2]  Chung-Yuan Huang,et al.  Influence of Local Information on Social Simulations in Small-World Network Models , 2005, J. Artif. Soc. Soc. Simul..

[3]  Injong Rhee,et al.  On the levy-walk nature of human mobility , 2011, TNET.

[4]  Pan Hui,et al.  CloudShield: Efficient anti-malware smartphone patching with a P2P network on the cloud , 2012, 2012 IEEE 12th International Conference on Peer-to-Peer Computing (P2P).

[5]  Matthew Smith,et al.  Evaluating the threat of epidemic mobile malware , 2012, 2012 IEEE 8th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob).

[6]  Saurabh Bagchi,et al.  Modeling and Automated Containment of Worms , 2008, IEEE Trans. Dependable Secur. Comput..

[7]  J.-Y. Le Boudec,et al.  Dynamic network security deployment under partial information , 2008, 2008 46th Annual Allerton Conference on Communication, Control, and Computing.

[8]  Stefan Savage,et al.  Inside the Slammer Worm , 2003, IEEE Secur. Priv..

[9]  Thomas W. MacFarland Two-Way Analysis of Variance , 2012 .

[10]  H. Andersson,et al.  Stochastic Epidemic Models and Their Statistical Analysis , 2000 .

[11]  Matthew C. Elder,et al.  Recent worms: a survey and trends , 2003, WORM '03.

[12]  Cristina Nita-Rotaru,et al.  Infection quarantining for wireless networks using power control , 2010 .

[13]  George Kesidis,et al.  Coupled Kermack-McKendrick Models for Randomly Scanning and Bandwidth-Saturating Internet Worms , 2005, QoS-IP.

[14]  Sencun Zhu,et al.  A Social Network Based Patching Scheme for Worm Containment in Cellular Networks , 2009, IEEE INFOCOM 2009.

[15]  Vern Paxson,et al.  How to Own the Internet in Your Spare Time , 2002, USENIX Security Symposium.

[16]  Giuseppe Serazzi,et al.  Computer virus propagation models , 2004 .

[17]  Geoffrey M. Voelker,et al.  Defending Mobile Phones from Proximity Malware , 2009, IEEE INFOCOM 2009.

[18]  Geoffrey M. Voelker,et al.  Can you infect me now?: malware propagation in mobile phone networks , 2007, WORM '07.

[19]  Matthew M. Williamson,et al.  Throttling viruses: restricting propagation to defeat malicious mobile code , 2002, 18th Annual Computer Security Applications Conference, 2002. Proceedings..

[20]  Sencun Zhu,et al.  Improving sensor network immunity under worm attacks: a software diversity approach , 2008, MobiHoc '08.

[21]  David A. Maltz,et al.  Dynamic Source Routing in Ad Hoc Wireless Networks , 1994, Mobidata.

[22]  Robert G. Cole Initial Studies on Worm Propagation in Manets for Future Army Combat Systems , 2004 .

[23]  Jeffrey O. Kephart,et al.  Measuring and modeling computer virus prevalence , 1993, Proceedings 1993 IEEE Computer Society Symposium on Research in Security and Privacy.

[24]  Eitan Altman,et al.  Optimal Quarantining of Wireless Malware Through Reception Gain Control , 2012, IEEE Transactions on Automatic Control.

[25]  Christos Gkantsidis,et al.  Network coding for large scale content distribution , 2005, Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies..

[26]  G. Serio,et al.  A generalization of the Kermack-McKendrick deterministic epidemic model☆ , 1978 .

[27]  R. May,et al.  Infectious Diseases of Humans: Dynamics and Control , 1991, Annals of Internal Medicine.

[28]  Sancheng Peng,et al.  Modeling the dynamics of worm propagation using two-dimensional cellular automata in smartphones , 2013, J. Comput. Syst. Sci..

[29]  Gang Xu,et al.  What you see predicts what you get - lightweight agent-based malware detection , 2013, Secur. Commun. Networks.

[30]  Dawn Xiaodong Song,et al.  Dynamic quarantine of Internet worms , 2004, International Conference on Dependable Systems and Networks, 2004.

[31]  Albert-László Barabási,et al.  Understanding individual human mobility patterns , 2008, Nature.

[32]  Henry L. Owen,et al.  Detecting and categorizing kernel-level rootkits to aid future detection , 2006, IEEE Security & Privacy Magazine.

[33]  David A. Maltz,et al.  A performance comparison of multi-hop wireless ad hoc network routing protocols , 1998, MobiCom '98.

[34]  Brian D. Noble,et al.  Modeling epidemic spreading in mobile environments , 2005, WiSe '05.

[35]  Eitan Altman,et al.  Optimal Dissemination of Security Patches in Mobile Wireless Networks , 2012, IEEE Transactions on Information Theory.

[36]  Paolo Santi,et al.  An analysis of the node spatial distribution of the random waypoint mobility model for ad hoc networks , 2002, POMC '02.

[37]  Christian Becker,et al.  An epidemic model for information diffusion in MANETs , 2002, MSWiM '02.

[38]  Margaret Martonosi,et al.  Human mobility modeling at metropolitan scales , 2012, MobiSys '12.

[39]  Kang G. Shin,et al.  On capturing malware dynamics in mobile power-law networks , 2008, SecureComm.

[40]  Andrea Passarella,et al.  HCMM: Modelling spatial and temporal properties of human mobility driven by users' social relationships , 2010, Comput. Commun..

[41]  J. J. Garcia-Luna-Aceves,et al.  Source-tree routing in wireless networks , 1999, Proceedings. Seventh International Conference on Network Protocols.

[42]  Kevin A. Kwiat,et al.  Modeling the spread of active worms , 2003, IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428).

[43]  Kang G. Shin,et al.  Behavioral detection of malware on mobile handsets , 2008, MobiSys '08.

[44]  Jorma T. Virtamo,et al.  Random waypoint mobility model in cellular networks , 2007, Wirel. Networks.

[45]  Injong Rhee,et al.  SLAW: A New Mobility Model for Human Walks , 2009, IEEE INFOCOM 2009.

[46]  Bernhard Plattner,et al.  Experiences with worm propagation simulations , 2003, WORM '03.

[47]  Donald F. Towsley,et al.  Code red worm propagation modeling and analysis , 2002, CCS '02.

[48]  Christian Wagner,et al.  The Spatial Node Distribution of the Random Waypoint Mobility Model , 2002, WMAN.

[49]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.

[50]  Kang G. Shin,et al.  On Mobile Viruses Exploiting Messaging and Bluetooth Services , 2006, 2006 Securecomm and Workshops.

[51]  Mario Gerla,et al.  On-demand multicast in mobile wireless networks , 1998, Proceedings Sixth International Conference on Network Protocols (Cat. No.98TB100256).

[52]  Jeffrey O. Kephart,et al.  Directed-graph epidemiological models of computer viruses , 1991, Proceedings. 1991 IEEE Computer Society Symposium on Research in Security and Privacy.

[53]  Steve R. White,et al.  Computers and epidemiology , 1993, IEEE Spectrum.

[54]  Donald F. Towsley,et al.  Email worm modeling and defense , 2004, Proceedings. 13th International Conference on Computer Communications and Networks (IEEE Cat. No.04EX969).

[55]  Cristina Nita-Rotaru,et al.  Closing the Pandora's box: Defenses for thwarting epidemic outbreaks in mobile adhoc networks , 2012, 2012 IEEE 9th International Conference on Mobile Ad-Hoc and Sensor Systems (MASS 2012).

[56]  Tracy Camp,et al.  A survey of mobility models for ad hoc network research , 2002, Wirel. Commun. Mob. Comput..

[57]  Robert Bridson,et al.  Fast Poisson disk sampling in arbitrary dimensions , 2007, SIGGRAPH '07.

[58]  Cecilia Mascolo,et al.  STOP: Socio-Temporal Opportunistic Patching of short range mobile malware , 2012, 2012 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM).