0.13μm CMOS technologies for analog front-end circuits in LHC detector upgrades

Deep submicron CMOS technologies are widely used for the implementation of low noise front-end electronics in various detector applications. In this field the designers’ effort is presently focused on 0.13μm technologies. This work presents the results of noise measurements carried out on CMOS devices in a 0.13 μm commercial process. The study also includes an evaluation of the impact of high doses of ionizing radiation on the noise performances. Data obtained from the measurements provide a powerful tool to model noise parameters and establish design criteria in a 0.13 μm CMOS process for detector front-ends in LHC upgrades.

[1]  L. Ratti,et al.  Instrumentation for noise measurements on CMOS transistors for fast detector preamplifiers , 2001, 2001 IEEE Nuclear Science Symposium Conference Record (Cat. No.01CH37310).

[2]  Emmanuel Augendre,et al.  Short-channel radiation effect in 60 MeV proton irradiated 0.13 /spl mu/m CMOS transistors , 2003 .

[3]  Veljko Radeka,et al.  LOW-NOISE TECHNIQUES IN DETECTORS , 1988 .

[4]  A. Marchioro,et al.  A 0.13-/spl mu/m CMOS serializer for data and trigger optical links in particle physics experiments , 2004, IEEE Transactions on Nuclear Science.

[5]  P. F. Manfredi,et al.  Front-end electronics for pixel sensors , 2001 .

[6]  Lloyd W. Massengill,et al.  Radiation-enhanced short channel effects due to multi-dimensional influence from charge at trench isolation oxides , 1999 .

[7]  R. J. Yarema,et al.  FPIX2: a radiation-hard pixel readout chip for BTeV , 2001 .

[8]  M. Turowski,et al.  Nonuniform total-dose-induced charge distribution in shallow-trench isolation oxides , 2004, IEEE Transactions on Nuclear Science.

[9]  Gianluca Traversi,et al.  Design criteria for low noise front-end electronics in the 0.13 μm CMOS generation , 2006 .

[10]  Willy Sansen,et al.  Layout techniques to enhance the radiation tolerance of standard CMOS technologies demonstrated on a pixel detector readout chip , 2000 .

[11]  Charles G. Sodini,et al.  A 1/f noise technique to extract the oxide trap density near the conduction band edge of silicon , 1989 .

[12]  K. Yeo,et al.  Effect of technology scaling on the 1/f noise of deep submicron PMOS transistors , 2004 .

[13]  Y. Tsividis Operation and modeling of the MOS transistor , 1987 .

[14]  Massimo Manghisoni,et al.  Submicron CMOS technologies for low-noise analog front-end circuits , 2002 .

[15]  P. O'Connor,et al.  MOSFET optimization in deep submicron technology for charge amplifiers , 2004, IEEE Symposium Conference Record Nuclear Science 2004..

[16]  Federico Faccio,et al.  Noise characterization of a CMOS technology for the LHC experiments , 2001 .

[17]  L. Ratti,et al.  Total ionizing dose effects on the analog performance of a 0.13 /spl mu/m CMOS technology , 2005, IEEE Radiation Effects Data Workshop, 2005..