First vs. second gradient of strain theory for capillarity effects in an elastic fluid at small length scales

Mindlin [22] wrote a milestone paper claiming that a second strain gradient theory is required for a continuum description of volume cohesion and surface tension in isotropic elastic media. The objective of the present work is to compare Mindlin’s approach to more standard capillarity models based on a first strain gradient theory and Korteweg’s equation. A general micromorphic model is then proposed as a numerical method to implement Mindlin’s theory in a finite element code.

[1]  R. Toupin Elastic materials with couple-stresses , 1962 .

[2]  Modelling Wetting Behaviour , 2000 .

[3]  R. Toupin ELASTIC MATERIALS WITH COUPLE STRESSES, ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS , 1962 .

[4]  Morton E. Gurtin,et al.  A continuum theory of elastic material surfaces , 1975 .

[5]  Morton E. Gurtin,et al.  Tractions, Balances, and Boundary Conditions for Nonsimple Materials with Application to Liquid Flow at Small-Length Scales , 2006 .

[6]  P. Germain,et al.  The Method of Virtual Power in Continuum Mechanics. Part 2: Microstructure , 1973 .

[7]  H. Gouin,et al.  Relation entre l'équation de l'énergie et l'équation du mouvement en théorie de Korteweg de la capillarité , 1985 .

[8]  G. Foussereau,et al.  Comptes rendus des séances de l'Académie des Sciences et annales de chimie et de physique; 1892 , 1893 .

[9]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[10]  R. D. Mindlin,et al.  On first strain-gradient theories in linear elasticity , 1968 .

[11]  A. Eringen Microcontinuum Field Theories , 2020, Advanced Continuum Theories and Finite Element Analyses.

[12]  P. Beauchamp,et al.  Atomistic calculation of size effects on elastic coefficients in nanometre-sized tungsten layers and wires , 2004 .

[13]  A. Saúl,et al.  Elastic effects on surface physics , 2004 .

[14]  W. Dreyer,et al.  On the Becker/Döring Theory of Nucleation of Liquid Droplets in Solids , 2006 .

[15]  P. Podio-Guidugli,et al.  Hypertractions and hyperstresses convey the same mechanical information , 2009, 0906.4199.

[16]  C. Truesdell,et al.  The Non-Linear Field Theories Of Mechanics , 1992 .

[17]  Jianmin Qu,et al.  Homogenization Method for Strength and Inelastic Behavior of Nanocrystalline Materials , 2004 .

[18]  Fluid with internal wettability , 2003 .

[19]  N. Fleck,et al.  FINITE ELEMENTS FOR MATERIALS WITH STRAIN GRADIENT EFFECTS , 1999 .

[20]  M. Gurtin Thermodynamics and the possibility of spatial interaction in elastic materials , 1965 .

[21]  Samuel Forest,et al.  Micromorphic Approach for Gradient Elasticity, Viscoplasticity, and Damage , 2009 .

[22]  S. Forest,et al.  Micromorphic continuum modelling of the deformation and fracture behaviour of nickel foams , 2006 .

[23]  M. Lazar,et al.  On a theory of nonlocal elasticity of bi-Helmholtz type and some applications , 2006 .

[24]  R. D. Mindlin Second gradient of strain and surface-tension in linear elasticity , 1965 .

[25]  Morton E. Gurtin,et al.  Surface stress in solids , 1978 .

[26]  Samuel Forest,et al.  Nonlinear microstrain theories , 2006 .

[27]  Jianmin Qu,et al.  Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films , 2005 .