Selective Deposition of an Ultrathin Pt Layer on a Au-Nanoisland-Modified Si Photocathode for Hydrogen Generation

Platinum, being the most efficient and stable catalyst, is used in photoelectrochemical (PEC) devices. However, a minimal amount of Pt with maximum catalytic activity is required to be used to minimize the cost of production. In this work, we use an environmentally friendly, cost-effective, and less Pt-consuming method to prepare PEC devices for the hydrogen evolution reaction (HER). The Pt monolayer catalyst is selectively deposited on a Au-nanoisland-supported boron-doped p-type Si (100) photocathode. The PEC device based on the Si photocathode with an ultralow loading of the Pt catalyst exhibits a comparable performance for the HER to that of devices with a thick Pt layer. In addition, we demonstrate that by using a thin TiO2 layer deposited by atomic layer deposition photo-oxidation of the Si photocathode can be blocked resulting in a stable PEC performance.

[1]  P. McIntyre,et al.  Atomic Layer Deposited Corrosion Protection: A Path to Stable and Efficient Photoelectrochemical Cells. , 2016, The journal of physical chemistry letters.

[2]  D. Schmeißer,et al.  Electronic properties of atomic layer deposition films, anatase and rutile TiO2 studied by resonant photoemission spectroscopy , 2016 .

[3]  Ming-yu Li,et al.  Evolution of Self-Assembled Au NPs by Controlling Annealing Temperature and Dwelling Time on Sapphire (0001) , 2015, Nanoscale Research Letters.

[4]  Nathan S. Lewis,et al.  Thin-Film Materials for the Protection of Semiconducting Photoelectrodes in Solar-Fuel Generators , 2015 .

[5]  O. Hansen,et al.  Scalability and feasibility of photoelectrochemical H2 evolution: the ultimate limit of Pt nanoparticle as an HER catalyst , 2015 .

[6]  In Su Lee,et al.  Fabrication of Supported AuPt Alloy Nanocrystals with Enhanced Electrocatalytic Activity for Formic Acid Oxidation through Conversion Chemistry of Layer-Deposited Pt(2+) on Au Nanocrystals. , 2015, Small.

[7]  Thomas Hannappel,et al.  Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure , 2015, Nature Communications.

[8]  Xiaoxin Zou,et al.  Noble metal-free hydrogen evolution catalysts for water splitting. , 2015, Chemical Society reviews.

[9]  D. Schmeißer,et al.  Si microstructures laminated with a nanolayer of TiO2 as long-term stable and effective photocathodes in PEC devices. , 2015, Nanoscale.

[10]  Demetri Psaltis,et al.  Design and cost considerations for practical solar-hydrogen generators , 2014 .

[11]  Matthew R. Shaner,et al.  Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation , 2014, Science.

[12]  Jin-Young Jung,et al.  Long-term durable silicon photocathode protected by a thin Al2O3/SiOx layer for photoelectrochemical hydrogen evolution , 2014 .

[13]  Eun-Soo Kim,et al.  Annealing temperature effect on self-assembled Au droplets on Si (111) , 2013, Nanoscale Research Letters.

[14]  Huijun Zhao,et al.  Active sites on hydrogen evolution photocatalyst , 2013 .

[15]  Dunwei Wang,et al.  Solar hydrogen generation by silicon nanowires modified with platinum nanoparticle catalysts by atomic layer deposition. , 2013, Angewandte Chemie.

[16]  Han Yang,et al.  Unidirectional suppression of hydrogen oxidation on oxidized platinum clusters , 2013, Nature Communications.

[17]  N. Dasgupta,et al.  Atomic layer deposition of platinum catalysts on nanowire surfaces for photoelectrochemical water reduction. , 2013, Journal of the American Chemical Society.

[18]  I. Oh,et al.  Platinum monolayer electrocatalyst on gold nanostructures on silicon for photoelectrochemical hydrogen evolution. , 2013, ACS nano.

[19]  C. Mériadec,et al.  Electroless patterned assembly of metal nanoparticles on hydrogen-terminated silicon surfaces for applications in photoelectrocatalysis. , 2013, ACS applied materials & interfaces.

[20]  Thomas F. Jaramillo,et al.  Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy , 2012 .

[21]  Y. Ogata,et al.  Electrodeposition of platinum and silver into chemically modified microporous silicon electrodes , 2012, Nanoscale Research Letters.

[22]  Milutin Smiljanić,et al.  Catalysis of Hydrogen Evolution on Au(111) Modified by Spontaneously Deposited Pd Nanoislands , 2012, Electrocatalysis.

[23]  R. Landers,et al.  The ethanol electrooxidation at Pt layers deposited on polycrystalline Au. , 2012, Physical chemistry chemical physics : PCCP.

[24]  Ib Chorkendorff,et al.  Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. , 2011, Nature materials.

[25]  Jihun Oh,et al.  Nanoporous black silicon photocathode for H2 production by photoelectrochemical water splitting , 2011 .

[26]  N. Lewis,et al.  pH-Independent, 520 mV Open-Circuit Voltages of Si/Methyl Viologen 2+/+ Contacts Through Use of Radial n + p-Si Junction Microwire Array Photoelectrodes , 2011 .

[27]  James R. McKone,et al.  Solar water splitting cells. , 2010, Chemical reviews.

[28]  D. Pradhan,et al.  Interfacial electronic structure of gold nanoparticles on Si(100): alloying versus quantum size effects. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[29]  S. Pizzini,et al.  Effect of Pt particle size and distribution on photoelectrochemical hydrogen evolution by p-Si photocathodes. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[30]  S. Brankovic,et al.  Metal monolayer deposition by replacement of metal adlayers on electrode surfaces , 2001 .

[31]  G. Bilger,et al.  Hydrogen evolution on platinum-coated p-silicon photocathodes , 1996 .

[32]  Z. Lu,et al.  Interaction of Au on Si(100) studied by core level binding energy shifts , 1993 .

[33]  H. Honbo,et al.  Detailed underpotential deposition of copper on gold(III) in aqueous solutions , 1991 .

[34]  M. Seah,et al.  AES: Energy calibration of electron spectrometers. I—an absolute, traceable energy calibration and the provision of atomic reference line energies , 1984 .

[35]  G. Schön ESCA studies of Cu, Cu2O and CuO , 1973 .

[36]  D. Schmeißer,et al.  Thermal and plasma enhanced atomic layer deposition of TiO2: Comparison of spectroscopic and electric properties , 2015 .