Microfabricated ion traps

Ion traps offer the opportunity to study fundamental quantum systems with a high level of accuracy highly decoupled from the environment. Individual atomic ions can be controlled and manipulated with electric fields, cooled to the ground state of motion with laser cooling and coherently manipulated using optical and microwave radiation. Microfabricated ion traps hold the advantage of allowing for smaller trap dimensions and better scalability towards large ion trap arrays also making them a vital ingredient for next generation quantum technologies. Here we provide an introduction into the principles and operation of microfabricated ion traps. We show an overview of material and electrical considerations which are vital for the design of such trap structures. We provide guidance on how to choose the appropriate fabrication design, consider different methods for the fabrication of microfabricated ion traps and discuss previously realised structures. We also discuss the phenomenon of anomalous heating of ions within ion traps, which becomes an important factor in the miniaturisation of ion traps.

[1]  W. Hensinger,et al.  On the application of radio frequency voltages to ion traps via helical resonators , 2011, 1106.5013.

[2]  F. Schmidt-Kaler,et al.  Fabrication and heating rate study of microscopic surface electrode ion traps , 2010, 1009.2834.

[3]  Versatile ytterbium ion trap experiment for operation of scalable ion-trap chips with motional heating and transition-frequency measurements , 2010, 1007.4010.

[4]  Karl Berggren,et al.  Superconducting microfabricated ion traps , 2010, 1010.6108.

[5]  D. Moehring,et al.  Demonstration of a microfabricated surface electrode ion trap , 2010, 1008.0990.

[6]  Winfried K. Hensinger,et al.  Optimum electrode configurations for fast ion separation in microfabricated surface ion traps , 2010, 1007.3542.

[7]  Wolfgang Hansel,et al.  Trapped-ion probing of light-induced charging effects on dielectrics , 2010, 1004.4842.

[8]  Lu-Ming Duan,et al.  Quantum simulation of frustrated Ising spins with trapped ions , 2010, Nature.

[9]  Tommaso Calarco,et al.  Colloquium: Trapped ions as quantum bits: Essential numerical tools , 2009, 0912.0196.

[10]  R. Schmied Electrostatics of gapped and finite surface electrodes , 2009, 0910.4517.

[11]  D. M. Lucas,et al.  Implementation of a symmetric surface-electrode ion trap with field compensation using a modulated Raman effect , 2009, 0909.3272.

[12]  J. Britton,et al.  Toward scalable ion traps for quantum information processing , 2009, 0909.2464.

[13]  E. Peik,et al.  Stray-field-induced quadrupole shift and absolute frequency of the 688-THz {sup 171}Yb{sup +} single-ion optical frequency standard , 2009 .

[14]  Richard Thompson,et al.  Applications of laser cooled ions in a Penning trap , 2009 .

[15]  J. Britton,et al.  Scalable arrays of rf Paul traps in degenerate Si , 2009, 0908.1591.

[16]  M. Harlander,et al.  Deterministic reordering of 40Ca+ ions in a linear segmented Paul trap , 2009, 0906.5335.

[17]  Joan P. Marler,et al.  Collective strong coupling with ion Coulomb crystals in an optical cavity , 2009, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[18]  Wolfgang Lange,et al.  Quantum Computing with Trapped Ions , 2009, Encyclopedia of Complexity and Systems Science.

[19]  Ph Laurent,et al.  Absolute frequency measurement of the 40Ca+ 4s(2)S_(1/2)-3d(2)D_(5/2) clock transition. , 2009, Physical review letters.

[20]  M. Johanning,et al.  Quantum simulations with cold trapped ions , 2009, 0905.0118.

[21]  Isaac L. Chuang,et al.  Demonstration of a scalable, multiplexed ion trap for quantum information processing , 2009, Quantum Inf. Comput..

[22]  H. Haffner,et al.  Wiring up trapped ions to study aspects of quantum information , 2009, 0903.3834.

[23]  J M Amini,et al.  High-fidelity transport of trapped-ion qubits through an X-junction trap array. , 2009, Physical review letters.

[24]  Isaac L. Chuang,et al.  Individual addressing of ions using magnetic field gradients in a surface-electrode ion trap , 2008, 0811.2422.

[25]  J. Wesenberg Ideal intersections for radio-frequency trap networks , 2008, 0802.3162.

[26]  J. Britton,et al.  Microfabrication techniques for trapped ion quantum information processing , 2010, 1008.2222.

[27]  T. Schaetz,et al.  Simulating a quantum magnet with trapped ions , 2008 .

[28]  N. Tomozeiu Electrical conduction and dielectric relaxation of a-SiOx (0 < x < 2) thin films deposited by reactive RF magnetron sputtering , 2008 .

[29]  M. House,et al.  Analytic model for electrostatic fields in surface-electrode ion traps , 2008 .

[30]  M. Gökçen,et al.  Frequency and gate voltage effects on the dielectric properties of Au/SiO2/n-Si structures , 2008 .

[31]  Janus H. Wesenberg,et al.  Electrostatics of surface-electrode ion traps , 2008, 0808.1623.

[32]  Ş. Karataş Studies on electrical and the dielectric properties in MS structures , 2008 .

[33]  M. Abgrall,et al.  Absolute Frequency Measurement of the 40Ca+ 4s 2S1/2 -3d2D5/2 Clock Transition , 2008, 0806.1414.

[34]  Jaroslaw Labaziewicz,et al.  Temperature dependence of electric field noise above gold surfaces. , 2008, Physical review letters.

[35]  R. Blatt,et al.  Towards fault-tolerant quantum computing with trapped ions , 2008, 0803.2798.

[36]  D M Lucas,et al.  High-fidelity readout of trapped-ion qubits. , 2008, Physical review letters.

[37]  F. Schmidt-Kaler,et al.  Sideband cooling and coherent dynamics in a microchip multi-segmented ion trap , 2007, 0712.3249.

[38]  David Leibrandt,et al.  Suppression of heating rates in cryogenic surface-electrode ion traps. , 2007, Physical review letters.

[39]  C. Monroe,et al.  On the transport of atomic ions in linear and multidimensional ion trap arrays , 2007, Quantum Inf. Comput..

[40]  A. Steane,et al.  A long-lived memory qubit on a low-decoherence quantum bus , 2007, 0710.4421.

[41]  E. Knill,et al.  Simplified motional heating rate measurements of trapped ions , 2007, 0707.1528.

[42]  Kenneth R. Brown,et al.  Laser ablation loading of a surface-electrode ion trap , 2007, 0706.3374.

[43]  A. Sinclair,et al.  Zero-point cooling and heating-rate measurements of a single Sr+88 ion , 2007 .

[44]  A. Selçuk On the dielectric characteristics of Au/SnO2/N-Si capacitors , 2007 .

[45]  Kenneth R. Brown,et al.  A Two-dimensional Lattice Ion Trap for Quantum Simulation , 2007, 0809.2824.

[46]  Kenneth R. Brown,et al.  Loading and characterization of a printed-circuit-board atomic ion trap , 2006, quant-ph/0603142.

[47]  M. Lewenstein,et al.  Trapped ion chain as a neural network: error resistant quantum computation. , 2005, Physical review letters.

[48]  Daniel Lynn Stick,et al.  Fabrication and Characterization of Semiconductor Ion Traps for Quantum Information Processing. , 2007 .

[49]  M. Bülbül Frequency and temperature dependent dielectric properties of Al/Si3N4/p-Si(100) MIS structure , 2007 .

[50]  A. Tataroğlu Electrical and dielectric properties of MIS Schottky diodes at low temperatures , 2006 .

[51]  J. Krupka,et al.  Measurements of Permittivity, Dielectric Loss Tangent, and Resistivity of Float-Zone Silicon at Microwave Frequencies , 2006, IEEE Transactions on Microwave Theory and Techniques.

[52]  Patrick Gill,et al.  Monolithic microfabricated ion trap chip design for scaleable quantum processors , 2006 .

[53]  Jr.,et al.  Efficient photoionization loading of trapped ions with ultrafast pulses , 2006, quant-ph/0608043.

[54]  Germany,et al.  Transport dynamics of single ions in segmented microstructured Paul trap arrays , 2006, quant-ph/0606237.

[55]  D. Leibfried,et al.  A microfabricated surface-electrode ion trap in silicon , 2006, quant-ph/0605170.

[56]  J. R. Castrejón-Pita,et al.  Novel designs for Penning ion traps , 2006, quant-ph/0603195.

[57]  C. Monroe,et al.  Scaling and suppression of anomalous heating in ion traps. , 2006, Physical review letters.

[58]  R. B. Blakestad,et al.  Microfabricated surface-electrode ion trap for scalable quantum information processing. , 2006, Physical review letters.

[59]  C. Monroe,et al.  Ion trap in a semiconductor chip , 2006, quant-ph/0601052.

[60]  P. J. Lee,et al.  Near-perfect simultaneous measurement of a qubit register , 2005, Quantum Inf. Comput..

[61]  K. R. Brown,et al.  Experimental investigation of planar ion traps , 2005, quant-ph/0511018.

[62]  L. Deslauriers,et al.  T-junction ion trap array for two-dimensional ion shuttling, storage, and manipulation , 2005, quant-ph/0508097.

[63]  Zeljko Zilic,et al.  Design methodology for wireless nodes with printed antennas , 2005, Proceedings. 42nd Design Automation Conference, 2005..

[64]  P. Haljan,et al.  Phase Control of Trapped Ion Quantum Gates , 2005, quant-ph/0505203.

[65]  C. Monroe,et al.  Planar ion trap geometry for microfabrication , 2004, quant-ph/0401047.

[66]  Stephen C. Thierauf,et al.  High-Speed Circuit Board Signal Integrity , 2004 .

[67]  J J García-Ripoll,et al.  Speed optimized two-qubit gates with laser coherent control techniques for ion trap quantum computing. , 2003, Physical review letters.

[68]  P. Frach,et al.  Properties of SiO2 and Al2O3 films for electrical insulation applications deposited by reactive pulse magnetron sputtering , 2003 .

[69]  H. Zhou,et al.  Thickness dependent dielectric breakdown of PECVD low-k carbon doped silicon dioxide dielectric thin films: modeling and experiments , 2003, Microelectron. J..

[70]  D. Leibfried,et al.  Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate , 2003, Nature.

[71]  Howard W. Johnson,et al.  High Speed Signal Propagation: Advanced Black Magic , 2003 .

[72]  K. Hayasaka,et al.  Deterministic cavity quantum electrodynamics with trapped ions , 2003 .

[73]  Christian Kurtsiefer,et al.  Experimental study of anomalous heating and trap instabilities in a microscopic 137 Ba ion trap , 2002 .

[74]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.

[75]  M. A. Rowej,et al.  Transport of quantum states and separation of ions in a dual RF ion trap , 2002, Quantum Inf. Comput..

[76]  Geoffrey P. Barwood,et al.  Kilohertz-resolution spectroscopy of the 2S1/2- 2F7/2 electric octupole transition in a single 171Yb+ ion , 2002 .

[77]  Frank G. Shi,et al.  Thickness dependent dielectric strength of a low-permittivity dielectric film , 2001 .

[78]  E. A. Curtis,et al.  Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser. , 2001, Physical review letters.

[79]  J. Miranda,et al.  Biot-Savart-like law in electrostatics , 2000, physics/0011015.

[80]  D. Engelke,et al.  Spectroscopy of the electric-quadrupole transition 2 S 1/2 (F=0)- 2 D 3/2 (F=2) in trapped 171 Yb + , 2000 .

[81]  P. Zoller,et al.  A scalable quantum computer with ions in an array of microtraps , 2000, Nature.

[82]  C. F. Roos,et al.  Speed of ion-trap quantum-information processors , 2000, quant-ph/0003087.

[83]  C. S. Wood,et al.  Heating of trapped ions from the quantum ground state , 2000, quant-ph/0002040.

[84]  F. Schmidt-Kaler,et al.  Quantum State Engineering on an Optical Transition and Decoherence in a Paul Trap , 1999, quant-ph/9909038.

[85]  Lov K. Grover,et al.  Quantum computation , 1999, Proceedings Twelfth International Conference on VLSI Design. (Cat. No.PR00013).

[86]  K. Mølmer,et al.  QUANTUM COMPUTATION WITH IONS IN THERMAL MOTION , 1998, quant-ph/9810039.

[87]  Klaus Molmer,et al.  Multiparticle Entanglement of Hot Trapped Ions , 1998, quant-ph/9810040.

[88]  I. Chakraborty,et al.  Feasibility Study of MEMS-Based Accelerator Grid Systems for Micro-Ion Engines: Electric Breakdown Characteristics , 1999 .

[89]  D. Aharonov Quantum Computation , 1998, quant-ph/9812037.

[90]  David J. Wineland,et al.  Minimization of ion micromotion in a Paul trap , 1998 .

[91]  C. S. Wood,et al.  Cooling the Collective Motion of Trapped Ions to Initialize a Quantum Register , 1998, quant-ph/9803023.

[92]  C. Monroe,et al.  Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions , 1997, Journal of research of the National Institute of Standards and Technology.

[93]  C. Monroe,et al.  Experimental preparation and measurement of quantum states of motion of a trapped atom , 1997 .

[94]  Kwang-Lung Lin,et al.  Adhesion of multilayer solder pads on silicon , 1997 .

[95]  Peter L. Knight,et al.  Fundamental physics with trapped ions , 1997 .

[96]  King,et al.  Experimental Determination of the Motional Quantum State of a Trapped Atom. , 1996, Physical review letters.

[97]  A. Steane The ion trap quantum information processor , 1996, quant-ph/9608011.

[98]  King,et al.  Resolved-sideband Raman cooling of a bound atom to the 3D zero-point energy. , 1995, Physical review letters.

[99]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[100]  H. C. Miller Flashover of insulators in vacuum: review of the phenomena and techniques to improved holdoff voltage , 1993 .

[101]  Richard Thompson,et al.  Spectroscopy of Trapped Ions , 1993 .

[102]  W. Paul Electromagnetic traps for charged and neutral particles , 1990 .

[103]  Wineland,et al.  Laser cooling to the zero-point energy of motion. , 1989, Physical review letters.

[104]  R. Hackam,et al.  Surface flashover of solid insulators in atmospheric air and in vacuum , 1985 .

[105]  Samuel H. Russ,et al.  Electromagnetics with Applications , 1984 .

[106]  C. Balasubramanian,et al.  Electrical conduction and breakdown properties of silicon nitride films , 1982 .

[107]  R. Hackam,et al.  Surface flashover of solid dielectric in vacuum , 1982 .

[108]  Paul Horowitz,et al.  The Art of Electronics , 1980 .

[109]  V. K. Agarwal,et al.  Thickness dependent studies of dielectric breakdown in Langmuir thin molecular films , 1973 .

[110]  V. K. Agarwal,et al.  Thickness dependence of breakdown field in thin films , 1971 .

[111]  H. Dehmelt,et al.  Radiofrequency Spectroscopy of Stored Ions I: Storage , 1968 .

[112]  F. M. Penning Die glimmentladung bei niedrigem druck zwischen koaxialen zylindern in einem axialen magnetfeld , 1936 .