Investigation of boron antimonide as hot carrier absorber material

Abstract Hot carrier solar cells (HCSCs) are a high-efficiency third generation solar cell concept. One major difficulty in realizing HSCSs is the delay of the hot carrier cooling process in their absorber. Bulk boron antimonide (BSb) was investigated with ab initio methods for its potential as hot carrier absorber (HCA). Our calculation results of its phononic structure show that several phonon decay processes are suppressed, leading to a phonon bottleneck and a considerable delay of carrier cooling. Results on its electronic structure reveal a low electron effective mass and an indirect band gap of 0.59 eV. Surprisingly high experimental values of the absorption coefficient near band gap are explained by distinct features of the electronic and phononic band dispersions and provide favorable optical properties for a HCA.

[1]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[2]  A. Nozik,et al.  Hot carrier solar cells , 2008 .

[3]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[4]  Stefano de Gironcoli,et al.  Ab initio calculation of phonon dispersions in semiconductors. , 1991, Physical review. B, Condensed matter.

[5]  Technology-compatible hot carrier solar cell with energy selective hot carrier absorber and carrier-selective contacts , 2012 .

[6]  Partha S. Dutta,et al.  The physics and technology of gallium antimonide: An emerging optoelectronic material , 1997 .

[7]  Shah,et al.  Ultrafast thermalization of photoexcited carriers in polar semiconductors. , 1993, Physical review. B, Condensed matter.

[8]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[9]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[10]  R. T. Ross,et al.  Efficiency of hot-carrier solar energy converters , 1982 .

[11]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[12]  H. Choi,et al.  High-efficiency high-power GaInAsSb-AlGaAsSb double-heterostructure lasers emitting at 2.3 mu m , 1991 .

[13]  P. Würfel,et al.  Solar energy conversion with hot electrons from impact ionisation , 1997 .

[14]  Arun Kumar Pal,et al.  BSb films: Synthesis and characterization , 2007 .

[15]  Christopher M. Durham,et al.  High Speed CMOS Design Styles , 1998 .

[16]  H. Fröhlich,et al.  XX. Properties of slow electrons in polar materials , 1950 .

[17]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[18]  Lee,et al.  Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics. , 1991, Physical review. B, Condensed matter.

[19]  T. Motohiro,et al.  Practical Factors Lowering Conversion Efficiency of Hot Carrier Solar Cells , 2010 .

[20]  Lee,et al.  Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials. , 1993, Physical review. B, Condensed matter.

[21]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[22]  P. G. Klemens,et al.  Anharmonic Decay of Optical Phonons , 1966 .

[23]  D. Chow,et al.  InAs/AlSb dual-gate HFETs , 1996, IEEE Electron Device Letters.

[24]  Jasprit Singh,et al.  Carrier dynamics and high-speed modulation properties of tunnel injection InGaAs-GaAs quantum-dot lasers , 2003 .

[25]  Artur F Izmaylov,et al.  Influence of the exchange screening parameter on the performance of screened hybrid functionals. , 2006, The Journal of chemical physics.

[26]  Lattice-Matched Hot Carrier Solar Cell with Energy Selectivity Integrated into Hot Carrier Absorber , 2012 .

[27]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[28]  M. Zacharias,et al.  Static hot carrier populations as a function of optical excitation energy detected through energy selective contacts by optically assisted IV , 2014 .

[29]  Chi-Kuang Sun,et al.  Ultrafast Carrier Thermalization in InN , 2006 .

[30]  Gavin Conibeer,et al.  Hot carrier solar cells operating under practical conditions , 2009 .

[31]  B. Ridley,et al.  The LO phonon lifetime in GaN , 1996 .

[32]  Gavin Conibeer,et al.  Hot carrier solar cells: Principles, materials and design , 2010 .

[33]  Singh,et al.  Erratum: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation , 1993, Physical review. B, Condensed matter.

[34]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[35]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[36]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[37]  Testa,et al.  Elastic constants of crystals from linear-response theory. , 1987, Physical review letters.

[38]  S. Chaudhuri,et al.  Bandgap and optical transitions in thin films from reflectance measurements , 1992 .

[39]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[40]  Martin A. Green,et al.  Particle conservation in the hot‐carrier solar cell , 2005 .