Response of photonic crystal hydrogels to carbohydrate and polyhydroxy alcohols

[1]  Zi-hui Meng,et al.  Clinical Evaluation of a Photonic Crystal Sensor for Glucose Monitoring in Urine , 2019, ChemistrySelect.

[2]  H. Byun,et al.  Highly discriminative and sensitive detection of volatile organic compounds for monitoring indoor air quality using pure and Au-loaded 2D In2O3 inverse opal thin films , 2018, Sensors and Actuators B: Chemical.

[3]  H. Cao,et al.  Visual multi-triggered sensor based on inverse opal hydrogel , 2018, Colloids and Surfaces A: Physicochemical and Engineering Aspects.

[4]  Shin‐Hyun Kim,et al.  Biodegradable Inverse Opals with Controlled Discoloration , 2018 .

[5]  Yihua Zhu,et al.  2D Photonic Crystal Hydrogel Sensor for Tear Glucose Monitoring , 2018, ACS omega.

[6]  Fuqiang Nie,et al.  Non-dye cell viability monitoring by using pH-responsive inverse opal hydrogels. , 2018, Journal of materials chemistry. B.

[7]  Hua Xu,et al.  A multifunctional wearable sensor based on a graphene/inverse opal cellulose film for simultaneous, in situ monitoring of human motion and sweat. , 2018, Nanoscale.

[8]  Taejoon Kang,et al.  An Antibody-Immobilized Silica Inverse Opal Nanostructure for Label-Free Optical Biosensors , 2018, Sensors.

[9]  Mingqing Chen,et al.  Inverse opals of photonic crystal hydrogels for selective sensing of lead ions , 2017 .

[10]  Hua Xiong,et al.  Label-free colorimetric detection of tetracycline using analyte-responsive inverse-opal hydrogels based on molecular imprinting technology , 2017 .

[11]  W. Kutner,et al.  Hierarchical templating in deposition of semi-covalently imprinted inverse opal polythiophene film for femtomolar determination of human serum albumin. , 2017, Biosensors & bioelectronics.

[12]  Jiaqi Liu,et al.  Volatile alcohol-responsive visual sensors based on P(HEMA-co-MA)-infiltrated SiO2 inverse opal photonic crystals , 2017 .

[13]  Yingjie Yu,et al.  A non-enzymatic urine glucose sensor with 2-D photonic crystal hydrogel , 2016, Analytical and Bioanalytical Chemistry.

[14]  Ming Xiao,et al.  Stimuli-Responsive Structurally Colored Films from Bioinspired Synthetic Melanin Nanoparticles , 2016 .

[15]  Jianping Gao,et al.  Chemically Responsive Polymer Inverse-Opal Photonic Crystal Films Created by a Self-Assembly Method , 2016 .

[16]  Joanna Aizenberg,et al.  A colloidoscope of colloid-based porous materials and their uses. , 2016, Chemical Society reviews.

[17]  Q. Yan,et al.  Layer-by-Layer Approach to (2+1)D Photonic Crystal Superlattice with Enhanced Crystalline Integrity. , 2015, Small.

[18]  Manuel Schaffner,et al.  Combining Bottom-Up Self-Assembly with Top-Down Microfabrication to Create Hierarchical Inverse Opals with High Structural Order. , 2015, Small.

[19]  Ying Guan,et al.  Photonic Crystals with a Reversibly Inducible and Erasable Defect State Using External Stimuli. , 2015, Angewandte Chemie.

[20]  Jun Li,et al.  Bio-inspired thermal-responsive inverse opal films with dual structural colors based on liquid crystal elastomer , 2015 .

[21]  P. Braun,et al.  Functionalized Hydrogel on Plasmonic Nanoantennas for Noninvasive Glucose Sensing , 2015 .

[22]  J. Baumberg,et al.  Smart polymer inverse-opal photonic crystal films by melt-shear organization for hybrid core–shell architectures , 2015 .

[23]  M. Gallei,et al.  Utilizing stretch-tunable thermochromic elastomeric opal films as novel reversible switchable photonic materials. , 2014, Macromolecular rapid communications.

[24]  Paul V Braun,et al.  Linear and Fast Hydrogel Glucose Sensor Materials Enabled by Volume Resetting Agents , 2014, Advanced materials.

[25]  Min Xue,et al.  A 2-D photonic crystal hydrogel for selective sensing of glucose , 2014 .

[26]  Jialei Bai,et al.  A novel opal closest-packing photonic crystal for naked-eye glucose detection. , 2014, Small.

[27]  O. Wolfbeis,et al.  Photonic crystals for chemical sensing and biosensing. , 2014, Angewandte Chemie.

[28]  Yumei Hu,et al.  Construction of near-infrared photonic crystal glucose-sensing materials for ratiometric sensing of glucose in tears. , 2013, Biosensors & bioelectronics.

[29]  Y. Takeoka Stimuli-responsive opals: colloidal crystals and colloidal amorphous arrays for use in functional structurally colored materials , 2013 .

[30]  Mark D. Losego,et al.  Hydrogel-Based Glucose Sensors: Effects of Phenylboronic Acid Chemical Structure on Response , 2013 .

[31]  Koen Clays,et al.  Linear and nonlinear optical properties of colloidal photonic crystals. , 2012, Chemical reviews.

[32]  Jianping Gao,et al.  Response of inverse-opal hydrogels to alcohols , 2012 .

[33]  Di Zhang,et al.  Highly sensitive colorimetric sensing for heavy metal ions by strong polyelectrolyte photonic hydrogels , 2011 .

[34]  Joanna Aizenberg,et al.  Encoding complex wettability patterns in chemically functionalized 3D photonic crystals. , 2011, Journal of the American Chemical Society.

[35]  Yadong Yin,et al.  Responsive photonic crystals. , 2011, Angewandte Chemie.

[36]  Lei Jiang,et al.  Colorful humidity sensitive photonic crystal hydrogel , 2008 .

[37]  Jianping Gao,et al.  Multiresponsive Inverse‐Opal Hydrogels , 2007 .

[38]  S. Asher,et al.  Fast responsive crystalline colloidal array photonic crystal glucose sensors. , 2006, Analytical chemistry.

[39]  Pierre Wiltzius,et al.  Humidity-sensing inverse opal hydrogels. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[40]  S. Asher,et al.  Photonic crystal glucose-sensing material for noninvasive monitoring of glucose in tear fluid. , 2004, Clinical chemistry.

[41]  Yoshitake Masuda,et al.  Self-assembly patterning of colloidal crystals constructed from opal structure or NaCl structure. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[42]  Paul V Braun,et al.  Glucose-sensitive inverse opal hydrogels: analysis of optical diffraction response. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[43]  Ovidiu Toader,et al.  Photonic band gap architectures for holographic lithography. , 2004, Physical review letters.

[44]  Kazunori Kataoka,et al.  Simple and precise preparation of a porous gel for a colorimetric glucose sensor by a templating technique. , 2003, Angewandte Chemie.

[45]  Masayoshi Watanabe,et al.  Template Synthesis and Optical Properties of Chameleonic Poly(N‐isopropylacrylamide) Gels Using Closest‐Packed Self‐Assembled Colloidal Silica Crystals , 2003 .

[46]  Andreas Stein,et al.  Optical properties of inverse opal photonic crystals , 2002 .

[47]  J. Sturm,et al.  On-chip natural assembly of silicon photonic bandgap crystals , 2001, Nature.

[48]  Ovidiu Toader,et al.  Proposed Square Spiral Microfabrication Architecture for Large Three-Dimensional Photonic Band Gap Crystals , 2001, Science.

[49]  Christopher A. White,et al.  Epitaxial Growth of High Dielectric Contrast Three‐Dimensional Photonic Crystals , 2001 .

[50]  Kurt Busch,et al.  Silicon‐Based Photonic Crystals , 2001 .

[51]  Steven G. Johnson,et al.  Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap , 2000 .

[52]  Satoru Shoji,et al.  Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin , 2000 .

[53]  R. G. Denning,et al.  Fabrication of photonic crystals for the visible spectrum by holographic lithography , 2000, Nature.

[54]  Bradley K. Smith,et al.  A three-dimensional photonic crystal operating at infrared wavelengths , 1998, Nature.

[55]  M. Wanke,et al.  Laser Rapid Prototyping of Photonic Band-Gap Microstructures , 1997, Science.

[56]  Chan,et al.  Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods. , 1994, Physical review. B, Condensed matter.

[57]  Che Ting Chan,et al.  Photonic band gaps in three dimensions: New layer-by-layer periodic structures , 1994 .

[58]  E. Yablonovitch,et al.  Hope for photonic bandgaps , 1991, Nature.

[59]  Zi-hui Meng,et al.  A covalently imprinted photonic crystal for glucose sensing , 2013 .

[60]  Paul V. Braun,et al.  Sensors and Actuators B: Chemical Fast Response Photonic Crystal Ph Sensor Based on Templated Photo-polymerized Hydrogel Inverse Opal , 2022 .