Light harvesting with non covalent carbon nanotube/porphyrin compounds

[1]  J. B. Kim,et al.  A mechanistic study of the synthesis and spectral properties of meso-tetraarylporphyrins. , 1972, Journal of the American Chemical Society.

[2]  T. Ando Excitons in Carbon Nanotubes , 1997 .

[3]  T. Brandes Low-Dimensional Systems , 2000 .

[4]  A. Zewail,et al.  Ultrafast Dynamics of Porphyrins in the Condensed Phase: I. Free Base Tetraphenylporphyrin † , 2002 .

[5]  V. C. Moore,et al.  Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes , 2002, Science.

[6]  C. Voisin,et al.  Ultrafast carrier dynamics in single-wall carbon nanotubes. , 2003, Physical review letters.

[7]  J. Lefebvre,et al.  Bright band gap photoluminescence from unprocessed single-walled carbon nanotubes. , 2003, Physical review letters.

[8]  C. Voisin,et al.  Bandgap photoluminescence of semiconducting single-wall carbon nanotubes , 2004 .

[9]  Ming Zheng,et al.  Solution redox chemistry of carbon nanotubes. , 2004, Journal of the American Chemical Society.

[10]  J. Tour,et al.  Covalent Functionalization of Single-Walled Carbon Nanotubes for Materials Applications , 2004 .

[11]  Louis E. Brus,et al.  The Optical Resonances in Carbon Nanotubes Arise from Excitons , 2005, Science.

[12]  S. Fukuzumi,et al.  Ordered assembly of protonated porphyrin driven by single-wall carbon nanotubes. J- and H-aggregates to nanorods. , 2005, Journal of the American Chemical Society.

[13]  Sheila G. Bailey,et al.  Single‐wall carbon nanotube–polymer solar cells , 2005 .

[14]  G. Lanzani,et al.  Intersubband exciton relaxation dynamics in single-walled carbon nanotubes. , 2005, Physical review letters.

[15]  R. Pomraenke,et al.  Exciton binding energies in carbon nanotubes from two-photon photoluminescence , 2005 .

[16]  M. Prato,et al.  Novel Photoactive Single‐Walled Carbon Nanotube–Porphyrin Polymer Wraps: Efficient and Long‐Lived Intracomplex Charge Separation , 2005 .

[17]  S. Reich,et al.  Exciton resonances quench the photoluminescence of zigzag carbon nanotubes. , 2005, Physical review letters.

[18]  D. Milkie,et al.  Photoluminescence from intertube carrier migration in single-walled carbon nanotube bundles. , 2006, Nano letters.

[19]  M. Prato,et al.  Electronically interacting single wall carbon nanotube–porphyrin nanohybrids , 2006 .

[20]  R. Nicholas,et al.  Temperature induced restoration of fluorescence from oxidised single-walled carbon nanotubes in aqueous sodium dodecylsulfate solution. , 2006, Physical chemistry chemical physics : PCCP.

[21]  Qing Wang,et al.  Highly Efficient Porphyrin Sensitizers for Dye-Sensitized Solar Cells , 2007 .

[22]  P. Avouris,et al.  Impact of oxide substrate on electrical and optical properties of carbon nanotube devices , 2007 .

[23]  S. Bachilo,et al.  Structure-dependent fluorescence efficiencies of individual single-walled carbon nanotubes. , 2007, Nano letters.

[24]  J. Tour,et al.  Stepwise Quenching of Exciton Fluorescence in Carbon Nanotubes by Single-Molecule Reactions , 2007, Science.

[25]  W. Milne,et al.  Photoluminescence spectroscopy of carbon nanotube bundles: evidence for exciton energy transfer. , 2007, Physical review letters.

[26]  L. Cognet,et al.  Luminescence decay and the absorption cross section of individual single-walled carbon nanotubes. , 2008, Physical Review Letters.

[27]  S. Bachilo,et al.  Efficient photosensitized energy transfer and near-IR fluorescence from porphyrin–SWNT complexes , 2008 .

[28]  C. Voisin,et al.  Excitation transfer in functionalized carbon nanotubes. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[29]  Kirk J. Ziegler,et al.  Swelling the micelle core surrounding single-walled carbon nanotubes with water-immiscible organic solvents. , 2008, Journal of the American Chemical Society.

[30]  J. Lefebvre,et al.  Excited excitonic states in single-walled carbon nanotubes. , 2008, Nano letters.

[31]  M. Prato,et al.  Singling out the electrochemistry of individual single-walled carbon nanotubes in solution. , 2008, Journal of the American Chemical Society.

[32]  N. Nakashima,et al.  Experimentally determined redox potentials of individual (n,m) single-walled carbon nanotubes. , 2009, Angewandte Chemie.

[33]  H. Dai,et al.  Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery , 2009, Nano research.

[34]  Christophe Voisin,et al.  Optical properties of carbon nanotubes in a composite material: The role of dielectric screening and thermal expansion , 2009 .

[35]  K. Ziegler,et al.  Coating individual single-walled carbon nanotubes with nylon 6,10 through emulsion polymerization. , 2009, ACS applied materials & interfaces.

[36]  Dirk M. Guldi,et al.  Carbon nanotubes--electronic/electrochemical properties and application for nanoelectronics and photonics. , 2009, Chemical Society reviews.

[37]  C. Voisin,et al.  Quantum efficiency of energy transfer in noncovalent carbon nanotube/porphyrin compounds , 2010 .

[38]  C. Voisin,et al.  Pi-stacking functionalization of carbon nanotubes through micelle swelling. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[39]  S. Maruyama,et al.  Exciton diffusion in air-suspended single-walled carbon nanotubes. , 2010, Physical review letters.

[40]  M. Johnston,et al.  Ultrafast charge separation at a polymer-single-walled carbon nanotube molecular junction. , 2011, Nano letters.

[41]  C. Voisin,et al.  Time-Resolved Investigation of Excitation Energy Transfer in Carbon Nanotube–Porphyrin Compounds , 2011 .

[42]  Johannes K. Sprafke,et al.  Electronic and mechanical modification of single-walled carbon nanotubes by binding to porphyrin oligomers. , 2011, ACS nano.

[43]  P. Kim,et al.  Low bias electron scattering in structure-identified single wall carbon nanotubes: role of substrate polar phonons. , 2011, Physical review letters.

[44]  S. Reich,et al.  Energy Transfer in Nanotube‐Perylene Complexes , 2012 .

[45]  S. Strauf,et al.  Quantum light signatures and nanosecond spectral diffusion from cavity-embedded carbon nanotubes. , 2012, Nano letters.

[46]  V. Derycke,et al.  Functionalization of Carbon Nanotubes through Polymerization in Micelles: A Bridge between the Covalent and Noncovalent Methods , 2013 .