Vertically aligned ZnO/In2S3 core/shell heterostructures with enhanced photoelectrochemical properties

[1]  Aiping Chen,et al.  Highly Ordered N-Doped Carbon Dots Photosensitizer on Metal-Organic Framework-Decorated ZnO Nanotubes for Improved Photoelectrochemical Water Splitting. , 2019, Small.

[2]  Liejin Guo,et al.  Obstacles of solar-powered photocatalytic water splitting for hydrogen production: A perspective from energy flow and mass flow , 2019, Energy.

[3]  Lei Zhang,et al.  CuO/ZnO heterojunction nanoarrays for enhanced photoelectrochemical water oxidation , 2019, Applied Surface Science.

[4]  Xing-wang,et al.  An overlapping ZnO nanowire photoanode for photoelectrochemical water splitting , 2019, Catalysis Today.

[5]  Jun Jin,et al.  Heterojunction and Oxygen Vacancy Modification of ZnO Nanorod Array Photoanode for Enhanced Photoelectrochemical Water Splitting. , 2018, ChemSusChem.

[6]  Liejin Guo,et al.  Photoelectrochemical Performance Dependence on Geometric Surface Area of Branched ZnO Nanowires , 2018, ChemElectroChem.

[7]  Y. Hsu,et al.  Synthesis of CuInS2 Quantum Dots/In2S3/ZnO Nanowire Arrays with High Photoelectrochemical Activity , 2018, ACS Sustainable Chemistry & Engineering.

[8]  D. Ding,et al.  Ni-doped TiO2 nanotubes photoanode for enhanced photoelectrochemical water splitting , 2018, Applied Surface Science.

[9]  Xianfeng Yang,et al.  Earth abundant ZnO/CdS/CuSbS2 core-shell nanowire arrays as highly efficient photoanode for hydrogen evolution , 2018 .

[10]  Bo Zhang,et al.  Design and synthesis of porous Ag/ZnO nanosheets assemblies as super photocatalysts for enhanced visible-light degradation of 4-nitrophenol and hydrogen evolution , 2018 .

[11]  J. Macák,et al.  ZnO Coated Anodic 1D TiO2 Nanotube Layers: Efficient Photo‐Electrochemical and Gas Sensing Heterojunction , 2018 .

[12]  Shiwei Lin,et al.  Interface optimization of ZnO nanorod/CdS quantum dots heterostructure by a facile two-step low-temperature thermal treatment for improved photoelectrochemical water splitting , 2017 .

[13]  Misook Kang,et al.  Ag2S quantum dot sensitized zinc oxide photoanodes for environment friendly photovoltaic devices , 2017 .

[14]  Liejin Guo,et al.  Hydrothermal synthesis of pyramid-like In2S3 film for efficient photoelectrochemical hydrogen generation , 2017 .

[15]  R. Chtourou,et al.  Impact of In2S3 shells thickness on the electrochemical and optical properties of oriented ZnO/In2S3 core/shell nanowires , 2017 .

[16]  D. Friedrich,et al.  Mesoporous thin film WO3 photoanode for photoelectrochemical water splitting: a sol–gel dip coating approach , 2017 .

[17]  Jih-Sheng Yang,et al.  Low-potential driven fully-depleted BiVO4/ZnO heterojunction nanodendrite array photoanodes for photoelectrochemical water splitting , 2017 .

[18]  W. Que,et al.  Facile synthesis of ZnO/CuInS2 nanorod arrays for photocatalytic pollutants degradation. , 2016, Journal of hazardous materials.

[19]  Lianzhou Wang,et al.  Stable Hematite Nanosheet Photoanodes for Enhanced Photoelectrochemical Water Splitting , 2016, Advanced materials.

[20]  Wei Zhao,et al.  1D ZnO/BiVO4 heterojunction photoanodes for efficient photoelectrochemical water splitting. , 2016, Dalton transactions.

[21]  Yue Zhang,et al.  Band alignment engineering for improved performance and stability of ZnFe2O4 modified CdS/ZnO nanostructured photoanode for PEC water splitting , 2016 .

[22]  Electrochemical synthesis of ZnO/In2S3 core–shell nanowires for enhanced photoelectrochemical properties , 2015 .

[23]  Prashanth Jampani Hanumantha,et al.  Nitrogen and cobalt co-doped zinc oxide nanowires – Viable photoanodes for hydrogen generation via photoelectrochemical water splitting ☆ , 2015 .

[24]  Zhifeng Liu,et al.  AgSbS2 modified ZnO nanotube arrays for photoelectrochemical water splitting , 2015 .

[25]  I. González-Valls,et al.  Vertically Aligned ZnO/InxSy Core–Shell Nanorods for High Efficient Dye-Sensitized Solar Cells , 2015 .

[26]  Yan-Gu Lin,et al.  Novel ZnO/Fe₂O₃ Core-Shell Nanowires for Photoelectrochemical Water Splitting. , 2015, ACS applied materials & interfaces.

[27]  Y. Ghayeb,et al.  Visible light-driven photoelectrochemical water splitting on ZnO–TiO2 heterogeneous nanotube photoanodes , 2015, Journal of Applied Electrochemistry.

[28]  Complete surface coverage of ZnO nanorod arrays by pulsed electrodeposited CuInS2 for visible light energy conversion. , 2015, Dalton transactions.

[29]  Cheng-Long Zhang,et al.  Au nanoparticles sensitized ZnO nanorod@nanoplatelet core–shell arrays for enhanced photoelectrochemical water splitting , 2015 .

[30]  Q. Xue,et al.  Iron-doping-enhanced photoelectrochemical water splitting performance of nanostructured WO3: a combined experimental and theoretical study. , 2015, Nanoscale.

[31]  U. Waghmare,et al.  Improved Photoelectrochemical Water Splitting Performance of Cu2O/SrTiO3 Heterojunction Photoelectrode , 2014 .

[32]  Zhenhui Kang,et al.  3D branched ZnO nanowire arrays decorated with plasmonic au nanoparticles for high-performance photoelectrochemical water splitting. , 2014, ACS applied materials & interfaces.

[33]  Kyoung-Shin Choi,et al.  Nanoporous BiVO4 Photoanodes with Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting , 2014, Science.

[34]  Mingfei Shao,et al.  Hierarchical Nanowire Arrays Based on ZnO Core−Layered Double Hydroxide Shell for Largely Enhanced Photoelectrochemical Water Splitting , 2014 .

[35]  K. Yong,et al.  Highly efficient photoelectrochemical hydrogen generation using a quantum dot coupled hierarchical ZnO nanowires array. , 2013, ACS applied materials & interfaces.

[36]  Kang Wang,et al.  Synthesis, characterization and enhanced photocatalytic performance of Ag2S-coupled ZnO/ZnS core/shell nanorods , 2013 .

[37]  Chunzhi Guo,et al.  Graphene Quantum Dots as a Green Sensitizer to Functionalize ZnO Nanowire Arrays on F‐Doped SnO2 Glass for Enhanced Photoelectrochemical Water Splitting , 2013 .

[38]  A. Ganguli,et al.  Band Gap Tuning of ZnO/In 2 S 3 Core/Shell Nanorod Arrays for Enhanced Visible-Light-Driven Photocatalysis , 2013 .

[39]  Peng Wang,et al.  Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. , 2013, Nano letters.

[40]  M. Swaminathan,et al.  An efficient nanostructured Ag2S–ZnO for degradation of Acid Black 1 dye under day light illumination , 2012 .

[41]  R. Eichberger,et al.  Multiple-Trapping Governed Electron Transport and Charge Separation in ZnO/In2S3 Core/Shell Nanorod Heterojunctions , 2012 .

[42]  Yichuan Ling,et al.  Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. , 2011, Nano letters.

[43]  Vincent Laporte,et al.  Highly active oxide photocathode for photoelectrochemical water reduction. , 2011, Nature materials.

[44]  Liejin Guo,et al.  Nanostructured WO₃/BiVO₄ heterojunction films for efficient photoelectrochemical water splitting. , 2011, Nano letters.

[45]  Michael Grätzel,et al.  Solar water splitting: progress using hematite (α-Fe(2) O(3) ) photoelectrodes. , 2011, ChemSusChem.

[46]  Wen-Sheng Chang,et al.  Quantum dot monolayer sensitized ZnO nanowire-array photoelectrodes: true efficiency for water splitting. , 2010, Angewandte Chemie.

[47]  W. R. Daud,et al.  An overview of photocells and photoreactors for photoelectrochemical water splitting , 2010 .

[48]  Fang Qian,et al.  Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation. , 2010, Nano letters.

[49]  Fang Qian,et al.  Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. , 2009, Nano letters.

[50]  T. Risse,et al.  A combined experimental and theoretical study , 2008 .

[51]  Todd G. Deutsch,et al.  Enhanced photoelectrochemical responses of ZnO films through Ga and N codoping , 2007 .

[52]  Craig A. Grimes,et al.  A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications , 2006 .

[53]  Shinobu Fujihara,et al.  Enhanced photoelectrochemical performance of ZnO electrodes sensitized with N-719 , 2006 .

[54]  H. Arakawa,et al.  Semiconductor-sensitized solar cells based on nanocrystalline In2S3/In2O3 thin film electrodes , 2000 .

[55]  R. Bhattacharya Solution Growth and Electrodeposited CuInSe2Thin Films , 1983 .