Sequence evolution in bacterial endosymbionts having extreme base compositions.

A major limitation on ability to reconstruct bacterial evolution is the lack of dated ancestors that might be used to evaluate and calibrate molecular clocks. Vertically transmitted symbionts that have cospeciated with animal hosts offer a firm basis for calibrating sequence evolution in bacteria, since fossils of the hosts can be used to date divergence events. Sequences for a functionally diverse set of genes have been obtained for bacterial endosymbionts (Buchnera) from two pairs of aphid host species, each pair diverging 50-70 MYA. Using these dates and estimated numbers of Buchnera generations per year, we calculated rates of base substitution for neutral and selected sites of protein-coding genes and overall rates for rRNA genes. Buchnera shows homogeneity among loci with regard to synonymous rate. The Buchnera synonymous rate is about twice that for low-codon-bias genes of Escherichia coli-Salmonella typhimurium on an absolute timescale, and fourfold higher on a generational timescale. Nonsynonymous substitutions show a greater rate disparity in favor of Buchnera, a result consistent with a genomewide decrease in selection efficiency in Buchnera. Ratios of synonymous to nonsynonymous substitutions differ for the two pairs of Buchnera, indicating that selection efficiency varies among lineages. Like numerous other intracellular bacteria, such as Rickettsia and Wolbachia, Buchnera has accumulated amino acids with codons rich in A or T. Phylogenetic reconstruction of amino acid replacements indicates that replacements yielding increased A + T predominated early in the evolution of Buchnera, with the trend slowing or stopping during the last 50 Myr. This suggests that base composition in Buchnera has approached a limit enforced by selective constraint acting on protein function.

[1]  D. Dykhuizen,et al.  Clonal divergence in Escherichia coli as a result of recombination, not mutation. , 1994, Science.

[2]  A. K. Minks,et al.  Paleontology and phylogeny , 1987 .

[3]  M. Bulmer,et al.  Synonymous substitution rates in enterobacteria. , 1995, Genetics.

[4]  N. Pace A molecular view of microbial diversity and the biosphere. , 1997, Science.

[5]  F. Ayala,et al.  Vagaries of the molecular clock. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[6]  J. M. Smith,et al.  Site-specific codon bias in bacteria. , 1996, Genetics.

[7]  Chi-Yung Lai,et al.  Amplification of trpEG: adaptation of Buchnera aphidicola to an endosymbiotic association with aphids. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[8]  N. Moran,et al.  Evolution of the tryptophan biosynthetic pathway in Buchnera (aphid endosymbionts): studies of plasmid-associated trpEG within the genus Uroleucon. , 1997, Molecular phylogenetics and evolution.

[9]  P. Sharp,et al.  The codon Adaptation Index--a measure of directional synonymous codon usage bias, and its potential applications. , 1987, Nucleic acids research.

[10]  P. Baumann,et al.  Sequence Analysis of a DNA Fragment from Buchnera aphidicola (Aphid Endosymbiont) Containing the Genes dapD-htrA-ilvI-ilvH-ftsL-ftsI-murE , 1998, Current Microbiology.

[11]  J. Werren,et al.  Evolution and phylogeny of Wolbachia: reproductive parasites of arthropods , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[12]  H. Ochman,et al.  Amelioration of Bacterial Genomes: Rates of Change and Exchange , 1997, Journal of Molecular Evolution.

[13]  R. Doolittle,et al.  Determining Divergence Times of the Major Kingdoms of Living Organisms with a Protein Clock , 1996, Science.

[14]  N. Moran,et al.  A molecular clock in endosymbiotic bacteria is calibrated using the insect hosts , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[15]  R J Gibbons,et al.  Estimates of the overall rate of growth of the intestinal microflora of hamsters, guinea pigs, and mice , 1967, Journal of bacteriology.

[16]  C. V. von Dohlen,et al.  Phylogenetic characterization and molecular evolution of bacterial endosymbionts in psyllids (Hemiptera: Sternorrhyncha). , 1998, Molecular biology and evolution.

[17]  N. Moran,et al.  of the aphid Schlechtendalia chinensis , 1995 .

[18]  M. Kimura Evolutionary Rate at the Molecular Level , 1968, Nature.

[19]  M. Blaxter,et al.  Phylogeny of Wolbachia in filarial nematodes , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[20]  N. Moran,et al.  The evolution and genetics of aphid endosymbionts , 1997 .

[21]  N. Sueoka Directional mutation pressure and neutral molecular evolution. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[22]  N. Moran,et al.  Endosymbionts (Buchnera) of the Aphid Uroleucon sonchi Contain Plasmids with trpEG and Remnants of trpE Pseudogenes , 1997, Current Microbiology.

[23]  Wen-Hsiung Li,et al.  The rate of synonymous substitution in enterobacterial genes is inversely related to codon usage bias. , 1987, Molecular biology and evolution.

[24]  R. Vrijenhoek,et al.  Cospeciation of chemoautotrophic bacteria and deep sea clams. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[25]  P. Baumann,et al.  Sequence Analysis of a 34.7-kb DNA Segment from the Genome of Buchnera aphidicola (Endosymbiont of Aphids) Containing groEL, dnaA, the atp operon, gidA, and rho , 1998, Current Microbiology.

[26]  P. Baumann,et al.  News & Notes: Buchnera aphidicola (Aphid Endosymbiont) Contains Genes Encoding Enzymes of Histidine Biosynthesis , 1998, Current Microbiology.

[27]  P. Baumann,et al.  Characterization of ftsZ, the Cell Division Gene of Buchnera aphidicola (Endosymbiont of Aphids) and Detection of the Product , 1998, Current Microbiology.

[28]  P. Baumann,et al.  Growth Kinetics of the Endosymbiont Buchnera aphidicola in the Aphid Schizaphis graminum , 1994, Applied and environmental microbiology.

[29]  W. Goebel,et al.  Intracellular endosymbiotic bacteria of Camponotus species (carpenter ants): systematics, evolution and ultrastructural characterization , 1996, Molecular microbiology.

[30]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[31]  H. Ishikawa,et al.  Accumulation of Adenine and Thymine in a groE-Homologous Operon of an , 1993 .

[32]  N. Moran,et al.  Evolutionary rates for tuf genes in endosymbionts of aphids. , 1998, Molecular biology and evolution.

[33]  H. Takada Does the Sexual Female of Schlechtendalia chinensis(BELL)(Homoptera:Pemphigidae)"Viviparously" Produce the Fundatrix? , 1991 .

[34]  H. Winkler,et al.  Codon usage in selected AT-rich bacteria. , 1988, Biochimie.

[35]  N. Moran,et al.  News & Notes: The Endosymbiont (Buchnera) of the Aphid Diuraphis noxia Contains All the Genes of the Tryptophan Biosynthetic Pathway , 1998, Current Microbiology.

[36]  R. Selander,et al.  Intergeneric transfer and recombination of the 6-phosphogluconate dehydrogenase gene (gnd) in enteric bacteria. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[37]  N. Moran A 48-Million-Year-Old Aphid—Host Plant Association and Complex Life Cycle: Biogeographic Evidence , 1989, Science.

[38]  N. Moran,et al.  Evidence for the establishment of aphid-eubacterium endosymbiosis in an ancestor of four aphid families , 1991, Journal of bacteriology.

[39]  N. Moran,et al.  Genetics, physiology, and evolutionary relationships of the genus Buchnera: intracellular symbionts of aphids. , 1995, Annual review of microbiology.

[40]  James R. Cole,et al.  A new version of the RDP (Ribosomal Database Project) , 1999, Nucleic Acids Res..

[41]  N. Moran,et al.  Genetic Characterization of Plasmids Containing Genes Encoding Enzymes of Leucine Biosynthesis in Endosymbionts (Buchnera) of Aphids , 1999, Journal of Molecular Evolution.

[42]  H. Ochman,et al.  Molecular archaeology of the Escherichia coli genome. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[43]  N. Bianchi,et al.  Evolution of the Zfx and Zfy genes: rates and interdependence between the genes. , 1993, Molecular biology and evolution.

[44]  Serap Aksoy,et al.  Concordant Evolution of a Symbiont with Its Host Insect Species: Molecular Phylogeny of Genus Glossina and Its Bacteriome-Associated Endosymbiont, Wigglesworthia glossinidia , 1999, Journal of Molecular Evolution.

[45]  Wen-Hsiung Li,et al.  So, what about the molecular clock hypothesis? , 1993, Current opinion in genetics & development.

[46]  S. Osawa,et al.  The guanine and cytosine content of genomic DNA and bacterial evolution. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Michael A. Savageau,et al.  Escherichia coli Habitats, Cell Types, and Molecular Mechanisms of Gene Control , 1983, The American Naturalist.

[48]  P. Reeves,et al.  Nucleotide sequences of the gnd genes from nine natural isolates of Escherichia coli: evidence of intragenic recombination as a contributing factor in the evolution of the polymorphic gnd locus , 1991, Journal of bacteriology.

[49]  P. Baumann,et al.  Characterization of a putative 23S-5S rRNA operon of Buchnera aphidicola (endosymbiont of aphids) unlinked to the 16S rRNA-encoding gene. , 1995, Gene.

[50]  Structure and evolution of the leucine plasmids carried by the endosymbiont (Buchnera aphidicola) from aphids of the family Aphididae. , 1998, FEMS microbiology letters.

[51]  N. Moran,et al.  Evidence for genetic drift in endosymbionts (Buchnera): analyses of protein-coding genes. , 1999, Molecular biology and evolution.

[52]  N. Moran,et al.  The endosymbiont (Buchnera sp.) of the aphid Diuraphis noxia contains plasmids consisting of trpEG and tandem repeats of trpEG pseudogenes , 1996, Applied and environmental microbiology.

[53]  A. Moya,et al.  Putative evolutionary origin of plasmids carrying the genes involved in leucine biosynthesis in Buchnera aphidicola (endosymbiont of aphids) , 1997, Journal of bacteriology.

[54]  R F Doolittle,et al.  Determining divergence times with a protein clock: update and reevaluation. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[55]  N. Moran Accelerated evolution and Muller's rachet in endosymbiotic bacteria. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[56]  J. Lobry,et al.  Influence of genomic G+C content on average amino-acid composition of proteins from 59 bacterial species. , 1997, Gene.

[57]  C. Bandi,et al.  The establishment of intracellular symbiosis in an ancestor of cockroaches and termites , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.