System Optimization: A Use Case in the Space Domain

The JUpiter ICy moons Explorer mission, JUICE, is the first large-class mission in the Cosmic Vision 2015-2025 program of the European Space Agency. Planned for launch in 2022 and arrival at Jupiter in 2030, it will spend at least three years making detailed observations of the biggest planet in the Solar System and three of its largest moons, Ganymede, Callisto and Europa. JUICE will carry a total of 11 scientific experiments (instruments) to study the gas giant planet and its large ocean-bearing moons. Each instrument will do a number of readings producing streams of data, which will be stored in the on-board mass storage and then transmitted to Earth via a specific protocol. In this paper we present a model-based approach for system optimization in terms of instrument parameters, mass storage configuration, and transmission band allocation. We use standard modeling and testing languages with formal semantics for describing the system and the different configuration scenarios, which are then executed in co-simulation mode to produce (1) very precise results and (2) graphical comparison of different configurations to help trade off.