Design and Implementation of Object-Oriented Model Libraries using Modelica

This thesis describes basic models for thermo-fluid systems and the implementation of the models using a flexible object-oriented structure in the ThermoFluid library. Model libraries provide an excellent way to package engineering knowledge of systems to be reused by non-experts. Many commercial simulation packages provide good model libraries, but they are usually domain specific and closed. Modelica(TM) is an open standard of an object-oriented modeling language for heterogeneous, multi-domain dynamic systems. Modelica combines the expressive power of equation based modeling with advanced object-oriented structuring features. A unique feature of Modelica are class parameters which allow a high-level parameterization of physical phenomena. The models are based on first principles. Control volumes contain the thermodynamic balance equations in lumped or one-dimensional discretized form. The library is built to be flexible: fluid property models in the control volume can be exchanged, single- or multi-component fluids are supported and the momentum balance submodel can be static or dynamic. Chemical reactions can be added to the model separately from other phenomena. Thermodynamic Jacobians are used to transform the dynamic equations into an efficient form. Low order moving boundary models for two phase flows are another result of the thesis. They make use of a novel approach for approximating the mean void fraction in the two phase region. The experiences from designing an object-oriented, reusable model library are summarized using design patterns. Design patterns are an attempt to describe "good practice" in modeling in a semi-formal way. The library has been used successfully for a broad range of industrial applications, among others modeling of micro gas turbine systems, carbon-dioxide based refrigeration systems, fuel cells, power plants and steam networks. The applications are briefly described in the thesis.

[1]  Hilding Elmqvist,et al.  DYMOLA - A Structured Model Language for Large Continuous Systems , 1978 .

[2]  D. Zenke Handbook of multiphase systems. Hg. von G. Hetsroni. Washington/New York/London: Hemisphere Publishing Corporation; New York: Mcgraw‐Hill Book Company 1982. XX u. 1505 S., geb. DM 187,10. , 1983 .

[3]  M. Weiss,et al.  Structural Analysis in the Dynamical Modelling of Chemical Engineering Systems , 2000 .

[4]  C F Curtiss,et al.  Integration of Stiff Equations. , 1952, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Jens G. Balchen,et al.  Computer Aided Modelling of Dynamic Processes Based on Elementary Physics , 1996 .

[6]  Roland Span Describing Mixtures with Multiparameter Equations of State , 2000 .

[7]  Christian Bischof,et al.  ADIC: an extensible automatic differentiation tool for ANSI-C , 1997 .

[8]  Hubertus Tummescheit Objektorientierte Modellierung Physikalischer Systeme, Teil 12 (Object-Oriented Modeling of Physical Systems, Part 12) , 2000 .

[9]  S. Patankar Numerical Heat Transfer and Fluid Flow , 2018, Lecture Notes in Mechanical Engineering.

[10]  H. Tummescheit,et al.  Modelica and SMILE - A Case Study Applying Object Oriented Concepts to Multi-Facet Modeling. , 1997 .

[11]  N. S. Mendelsohn,et al.  Coverings of Bipartite Graphs , 1958, Canadian Journal of Mathematics.

[12]  Andreas Griewank,et al.  Algorithm 755: ADOL-C: a package for the automatic differentiation of algorithms written in C/C++ , 1996, TOMS.

[13]  S. Klein,et al.  NIST Standard Reference Database 23: NIST Thermodynamic and Transport Properties of Refrigerants and Refrigerant Mixtures-REFPROP, Version 6.0 | NIST , 1998 .

[14]  H. A. Preisig,et al.  Minimal representation of first principle process models , 2001 .

[15]  Martín Abadi,et al.  A Theory of Objects , 1996, Monographs in Computer Science.

[16]  H. Harry Asada,et al.  Modeling of Vapor Compression Cycles for Multivariable Feedback Control of HVAC Systems , 1997 .

[17]  Karl Johan Åström,et al.  Modeling of Complex Systems , 2003 .

[18]  Jonas Eborn,et al.  Parameter Optimization Results for a Family of Thermo-Physical Drum Boiler Models , 1998 .

[19]  Hubertus Tummescheit,et al.  Moving Boundary Models for Dynamic Simulations of Two-Phase Flows , 2002 .

[20]  A. Bejan Advanced Engineering Thermodynamics , 1988 .

[21]  Min Oh Modelling and simulation of combined lumped and distributed processes , 1995 .

[22]  Gómez Pérez,et al.  Modelling of a Gas Turbine with Modelica , 2001 .

[23]  A. Church The calculi of lambda-conversion , 1941 .

[24]  Hans Olsson,et al.  Dymola for Multi-Engineering Modeling and Simulation , 2002 .

[25]  Sven Erik Mattsson,et al.  On modeling of Heat Exchangers in Modelica , 1997 .

[26]  H. Baehr,et al.  An International Standard Formulation for the Thermodynamic Properties of 1,1,1,2‐Tetrafluoroethane (HFC‐134a) for Temperatures from 170 K to 455 K and Pressures up to 70 MPa , 1994 .

[27]  Paul I. Barton,et al.  The modelling and simulation of combined discrete/continuous processes , 1992 .

[28]  P. Profos Die Regelung von Dampfanlagen , 1962 .

[29]  C. Pantelides The consistent intialization of differential-algebraic systems , 1988 .

[30]  Charlotta Johnsson,et al.  A Graphical Language for Batch Control , 1999 .

[31]  Hubertus Tummescheit Object-Oriented Modeling of Physical Systems, Part 11 , 2000 .

[32]  David Harel,et al.  Statecharts: A Visual Formalism for Complex Systems , 1987, Sci. Comput. Program..

[33]  Peter Fritzson,et al.  MathModelica - An Extensible Modeling and Simulation Environment with Integrated Graphics and Literate Programming , 2002 .

[34]  Bernt Nilsson,et al.  Simulation of a Thermal Power Plant Using an Object-Oriented Model Database , 1996 .

[35]  W. Wagner,et al.  A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple‐Point Temperature to 1100 K at Pressures up to 800 MPa , 1996 .

[36]  D. Abdollahian,et al.  Homogeneous non-equilibrium critical flow model , 1982 .

[37]  Jonas Eborn,et al.  A Grey-Box Identification Case Study: The Åström–Bell Drum-Boiler Model , 1997 .

[38]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[39]  Peter Andreas Heusser Modelling and simulation of boiling channels with a general front tracking approach , 1996 .

[40]  G. L. Wedekind,et al.  A Generalization of the System Mean Void Fraction Model for Transient Two-Phase Evaporating Flows , 1981 .

[41]  Sven Erik Mattsson,et al.  Index Reduction in Differential-Algebraic Equations Using Dummy Derivatives , 1993, SIAM J. Sci. Comput..

[42]  Hubertus Tummescheit,et al.  Modeling of Two-Phase Flows in Modelica , 2000 .

[43]  Olaf Bauer,et al.  Modelling of Two-Phase Flows with Modelica , 1999 .

[44]  Anders Rantzer,et al.  Trajectory-based model reduction of nonlinear systems , 1998 .

[45]  Hans Olsson,et al.  Dynamic Selection of States in Dymola , 2000 .

[46]  Johannes F. Broenink,et al.  Modeling mechtronic systems using the SIDOPS+ language , 1997 .

[47]  Falko Jens Wagner Object-oriented modeling of energy systems , 2001 .

[48]  Hubertus Tummescheit,et al.  Object-Oriented Modeling of Physical Systems, Part 17 , 2000 .

[49]  Sven Erik Mattsson,et al.  On Object-Oriented Modelling of Relays and Sliding Mode Behaviour , 1996 .

[50]  Jonas Eborn Modelling and Simulation of Thermal Power Plants , 1998 .

[51]  P. Sollero Book reviewMathematica: A system for doing mathematics by computer, 2nd edition: Stephen Wolfran, Addison-Wesley, 1991. pp. 992, hardback. £40.45. ISBN: 0 201 51502 4 , 1992 .

[52]  Kjell Gustafsson,et al.  Control of Error and Convergence in ODE Solvers , 1992 .

[53]  Sheng Liu,et al.  Modeling of vapor compression cycles for advanced controls in HVAC systems , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[54]  Jonas Eborn,et al.  Development of a Modelica Base Library for Modeling of Thermo-Hydraulic Systems , 2000 .

[55]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[56]  Sergio Bittanti,et al.  Performance assessment of the control system of once-through boilers , 2001 .

[57]  Mats Andersson,et al.  Object-Oriented Modeling and Simulation of Hybrid Systems , 1994 .

[58]  Bruce W. Char,et al.  Maple V Library Reference Manual , 1992, Springer New York.

[59]  K. Kobe The properties of gases and liquids , 1959 .

[60]  Nebojša Gašparović,et al.  Berechnung der Kennfelder mehrstufiger axialer Turbomaschinen , 1973 .

[61]  Andreas Griewank,et al.  The chain rule revisited in scientific computing. , 1991 .

[62]  Peter B. Whalley,et al.  Boiling, Condensation, and Gas-Liquid Flow , 1987 .

[63]  S. Zivi Estimation of Steady-State Steam Void-Fraction by Means of the Principle of Minimum Entropy Production , 1964 .

[64]  Karl-Erik Årzén Grafchart: A Graphical Language for Sequential Supervisory Control Applications , 1996 .

[65]  M. Egerstedt,et al.  On the regularization of Zeno hybrid automata , 1999 .

[66]  W. Press,et al.  Numerical Recipes: The Art of Scientific Computing , 1987 .

[67]  K. Juslin,et al.  Experience on mechanistic modelling of industrial process dynamics with APROS , 1995 .

[68]  J. Bird,et al.  Properties of water and steam , 1987 .

[69]  Stephen Wolfram,et al.  Mathematica: a system for doing mathematics by computer (2nd ed.) , 1991 .

[70]  Mark O. McLinden,et al.  NIST Thermodynamic and Transport Properties of Refrigerants and Refrigerant Mixtures-REFPROP , 1998 .

[71]  R. Pitz-Paal,et al.  Simulation of a Solar Thermal Central Receiver Power Plant. , 1997 .

[72]  Sanford Gordon,et al.  Computer program for calculation of complex chemical equilibrium compositions , 1972 .

[73]  S. Toumodge,et al.  METAMODELLING: Bond Graphs and Dynamic Systems [BOOKSHELF] , 1996, IEEE Control Systems.

[74]  P. I. Barton,et al.  DAEPACK: An Open Modeling Environment for Legacy Models , 2000 .

[75]  Jonas Eborn,et al.  On Model Libraries for Thermo-hydraulic Applications , 2001 .

[76]  Paul I. Barton,et al.  Modeling of combined discrete/continuous processes , 1994 .

[77]  H. Harry Asada,et al.  Multivariable control of vapor compression systems , 1998 .

[78]  Jonas Eborn,et al.  Design of a Thermo Hydraulic Model Library in ModelicaTM , 1998, ESM.

[79]  Torsten Bohlin,et al.  Interactive System Identification: Prospects and Pitfalls , 1991 .

[80]  Peter Fritzson,et al.  ObjectMath - An Object-Oriented Language and Environment for Symbolic and Numerical Processing in Scientific Computing , 1995, Sci. Program..

[81]  E. Badreddin Modelica Library for Hybrid Simulation of Mass Flow in Process Plants , 2002 .

[82]  J. David Logan,et al.  An Introduction to Nonlinear Partial Differential Equations , 1994 .

[83]  E. Hairer,et al.  Solving Ordinary Differential Equations I , 1987 .

[84]  S. Turns Introduction to Combustion , 1995, Aerothermodynamics and Jet Propulsion.

[85]  S.E. Mattsson,et al.  Modeling and simulation of behavioural systems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[86]  Karl Johan Åström,et al.  Physical System Modeling with Modelica , 1999 .

[87]  J. Gwyther,et al.  Properties of water and steam , 1970 .

[88]  Peter Fritzson,et al.  Extending Modelica for Partial Differential Equations , 2002 .

[89]  Rüdiger Franke,et al.  Formulation of dynamic optimization problems using Modelica and their efficient solution , 2002 .

[90]  Karl Johan Åström,et al.  Computer-Controlled Systems: Theory and Design , 1984 .

[91]  Karl-Erik Årzén,et al.  Grafchart and grafcet: A comparison between two graphical languages aimed for sequential control applications , 1999 .

[92]  Karl Johan Åström,et al.  Evolution of Continuous-Time Modeling and Simulation , 1998, ESM.

[93]  Tadao Murata,et al.  Petri nets: Properties, analysis and applications , 1989, Proc. IEEE.

[94]  Brian Postow Book review: A Theory of Objects by Martin Abadi and Luca Cardelli (Springer-Verlag, 1996): Series--Monographs in Computer Science , 1999, SIGA.

[95]  Staffan Haugwitz,et al.  Modelling of microturbine systems , 2003, 2003 European Control Conference (ECC).