Prediction of Gene Function in Methylthioadenosine Recycling from Regulatory Signals

ABSTRACT The S-box transcription termination control system, first identified in Bacillus subtilis, is used for regulation of gene expression in response to methionine availability. The presence of the S-box motif provided the first indication that the ykrTS and ykrWXYZ genes could play a role in recycling of 5′-methylthioadenosine, a by-product of polyamine biosynthesis that can be converted to methionine. In this study we demonstrate a role for the ykrTS and ykrWXYZ gene products in this pathway.

[1]  T. Henkin,et al.  Synthesis of Serine, Glycine, Cysteine, and Methionine , 2002 .

[2]  A. Danchin,et al.  MtnK, methylthioribose kinase, is a starvation-induced protein in Bacillus subtilis , 2001, BMC Microbiology.

[3]  F. Tabita,et al.  A ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO)-like protein from Chlorobium tepidum that is involved with sulfur metabolism and the response to oxidative stress , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[4]  A Danchin,et al.  Sulfur metabolism in Escherichia coli and related bacteria: facts and fiction. , 2000, Journal of molecular microbiology and biotechnology.

[5]  A. Danchin,et al.  Identification of yrrU as the methylthioadenosine nucleosidase gene in Bacillus subtilis. , 1999, DNA research : an international journal for rapid publication of reports on genes and genomes.

[6]  T. Henkin,et al.  The S box regulon: a new global transcription termination control system for methionine and cysteine biosynthesis genes in Gram‐positive bacteria , 1998, Molecular microbiology.

[7]  A. Danchin,et al.  Characterization of polyamine synthesis pathway in Bacillus subtilis 168 , 1998, Molecular microbiology.

[8]  N. Kyrpides,et al.  Archaeal translation initiation revisited: the initiation factor 2 and eukaryotic initiation factor 2B alpha-beta-delta subunit families. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[9]  K. Cornell,et al.  Cloning and expression of Escherichia coli 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase: identification of the pfs gene product. , 1998, Biochimica et biophysica acta.

[10]  D. Schomburg,et al.  5-Methylthioribose kinase , 1997 .

[11]  K. Cornell,et al.  Affinity purification of 5-methylthioribose kinase and 5-methylthioadenosine/S-adenosylhomocysteine nucleosidase from Klebsiella pneumoniae [corrected]. , 1996, The Biochemical journal.

[12]  M. Riscoe,et al.  Regulation of methylthioribose kinase by methionine in Klebsiella pneumoniae. , 1993, Journal of general microbiology.

[13]  M. Itaya,et al.  A neomycin resistance gene cassette selectable in a single copy state in the Bacillus subtilis chromosome. , 1989, Nucleic acids research.

[14]  E. Furfine,et al.  Intermediates in the conversion of 5'-S-methylthioadenosine to methionine in Klebsiella pneumoniae. , 1988, The Journal of biological chemistry.

[15]  A. J. Ferro,et al.  5-Methylthioribose kinase. A new enzyme involved in the formation of methionine from 5-methylthioribose. , 1978, The Journal of biological chemistry.

[16]  H. R. Schroeder,et al.  Biological production of 5-methylthioribose. , 1973, Canadian journal of microbiology.

[17]  J. Dainko,et al.  5'-Methylthioadenosine and related compounds as precursors of S-adenosylmethionine in yeast. , 1973, Biochimica et biophysica acta.

[18]  Jeffrey H. Miller Experiments in molecular genetics , 1972 .

[19]  J. A. Duerre A Hydrolytic Nucleosidase Acting on S-Adenosylhomocysteine and on 5'-Methylthioadenosine , 1962 .

[20]  C. Anagnostopoulos,et al.  REQUIREMENTS FOR TRANSFORMATION IN BACILLUS SUBTILIS , 1961, Journal of bacteriology.