On quadratic orthogonal bisectional curvature

In this article we study compact K\ahler manifolds satisfying a certain nonnegativity condition on the bisectional curvature. Under this condition, we show that the scalar curvature is nonnegative and that the first Chern class is positive assuming local irreducibility. We also obtain a partial classification of possible de Rham decompositions of the universal cover under this condition

[1]  Xiangwen Zhang On the boundary of Kähler cones , 2012 .

[2]  Luen-Fai Tam,et al.  A note on harmonic forms and the boundary of the K , 2011, 1105.2913.

[3]  S. Yau,et al.  A Degenerate Monge--Ampère equation and the Boundary Classes of Kähler Cones , 2009 .

[4]  Huiling Gu,et al.  An extension of Mok’s theorem on the generalized Frankel conjecture , 2007, 0709.4086.

[5]  X. Chen On Kähler manifolds with positive orthogonal bisectional curvature , 2006, math/0606229.

[6]  A. Sommese,et al.  Complex Differential Geometry , 1985 .

[7]  S. Bando On the classification of three-dimensional compact Kaehler manifolds of nonnegative bisectional curvature , 1984 .

[8]  H. Wu On compact Kähler manifolds of nonnegative bisectional curvature, II , 1981 .

[9]  S. Yau,et al.  Compact kähler manifolds of positive bisectional curvature , 1980 .

[10]  Shigefumi Mori,et al.  Proj ective manifolds with ample tangent bundles , 1979 .

[11]  S. Yau On The Ricci Curvature of a Compact Kahler Manifold and the Complex Monge-Ampere Equation, I* , 1978 .

[12]  伊藤 光弘 Compact Kahler Manifolds of Nonnegative Bisectional Curvature (リ-マン多様体の大域的研究) , 1975 .

[13]  J. Cheeger,et al.  The splitting theorem for manifolds of nonnegative Ricci curvature , 1971 .

[14]  S. Goldberg,et al.  Holomorphic bisectional curvature , 1967 .

[15]  R. Bishop,et al.  On the second cohomology group of a Kaehler manifold of positive curvature , 1965 .