On the Planning Problem for the Mean Field Games System
暂无分享,去创建一个
[1] Olivier Guéant,et al. Application of Mean Field Games to Growth Theory , 2008 .
[2] T. Gallouët,et al. Nonlinear Parabolic Equations with Measure Data , 1997 .
[3] P. Lions,et al. Jeux à champ moyen. II – Horizon fini et contrôle optimal , 2006 .
[4] Jules Michelet,et al. Cours au Collège de France , 1995 .
[5] Alessio Porretta,et al. Existence results for nonlinear parabolic equations via strong convergence of truncations , 1999 .
[6] Peter E. Caines,et al. An Invariance Principle in Large Population Stochastic Dynamic Games , 2007, J. Syst. Sci. Complex..
[7] Nizar Touzi,et al. Paris-Princeton Lectures on Mathematical Finance 2002 , 2003 .
[8] J. Simon. Compact sets in the spaceLp(O,T; B) , 1986 .
[9] P. Lions,et al. Jeux à champ moyen. I – Le cas stationnaire , 2006 .
[10] Peter E. Caines,et al. Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle , 2006, Commun. Inf. Syst..
[11] P. Lions,et al. Mean field games , 2007 .
[12] Yves Achdou,et al. Mean Field Games: Numerical Methods for the Planning Problem , 2012, SIAM J. Control. Optim..
[13] Alessio Porretta,et al. Nonlinear parabolic equations with natural growth terms and measure initial data , 2001 .
[14] Pierre-Louis Lions,et al. Long time average of mean field games , 2012, Networks Heterog. Media.
[15] Alessio Porretta,et al. Weak Solutions to Fokker–Planck Equations and Mean Field Games , 2015 .