Histamine detection using functionalized porphyrin as electrochemical mediator

[1]  E. Fagadar-Cosma,et al.  Optical and electrochemical behavior of new nano-sized complexes based on gold-colloid and Co-porphyrin derivative in the presence of H2O2 , 2016 .

[2]  Samuel J. Lind,et al.  Probing Donor–Acceptor Interactions in meso-Substituted Zn(II) Porphyrins Using Resonance Raman Spectroscopy and Computational Chemistry , 2015 .

[3]  J. Rayappan,et al.  Development of electrochemical biosensor with ceria-PANI core-shell nano-interface for the detection of histamine , 2014 .

[4]  Katsuhiko Ariga,et al.  Porphyrin-based sensor nanoarchitectonics in diverse physical detection modes. , 2014, Physical chemistry chemical physics : PCCP.

[5]  C. Frankenberg,et al.  Prospects for Chlorophyll Fluorescence Remote Sensing from the Orbiting Carbon Observatory-2 , 2014 .

[6]  M. Jin,et al.  Electrochemical reductive dechlorination of trichloroacetic acid on porous Ag-Pd thin foam , 2013, Russian Journal of Electrochemistry.

[7]  I. Stamatin,et al.  Functionalized porphyrin conjugate thin films deposited by matrix assisted pulsed laser evaporation , 2013 .

[8]  M. Cuartero,et al.  A SO2-selective electrode based on a Zn-porphyrin for wine analysis. , 2013, Analytica chimica acta.

[9]  M. G. Manera,et al.  Enhanced magneto-optical SPR platform for amine sensing based on Zn porphyrin dimers , 2013 .

[10]  M. P. Sotomayor,et al.  Biomimetic sensor based on 5,10,15,20-tetrakis(pentafluorophenyl)-21H,23H- porphyrin iron (III) chloride and MWCNT for selective detection of 2,4-D , 2013 .

[11]  Vlad Chiriac,et al.  A Novel Sensor for Monitoring of Iron(III) Ions Based on Porphyrins , 2012, Sensors.

[12]  E. Fagadar-Cosma,et al.  Synthesis, Spectroscopic and Self-Assembling Characterization of Novel Photoactive Mixed Aryl-Substituted Porphyrin , 2012 .

[13]  Bowan Wu,et al.  Determination of explosives based on novel type of sensor using porphyrin functionalized carbon nanotubes. , 2011, Colloids and surfaces. B, Biointerfaces.

[14]  S. Al-Karadaghi,et al.  Resonance Raman Spectroscopic Examination of Ferrochelatase-induced Porphyrin Distortion. , 2011, Journal of porphyrins and phthalocyanines.

[15]  I. Stamatin,et al.  MAPLE deposition of Mn(III) metalloporphyrin thin films: Structural, topographical and electrochemical investigations , 2011 .

[16]  I. Stamatin,et al.  Functional porphyrin thin films deposited by matrix assisted pulsed laser evaporation , 2010 .

[17]  A. Meghea,et al.  Spectral Characterization of Model Systems Containing Lipids and Chlorophyll , 2010 .

[18]  R. F. Shago Syntheses, electrochemistry and spectroscopic studies of metallocene-containing porphyrin complexes with biomedical applications , 2010 .

[19]  J. Shelnutt,et al.  Molecular organization in self-assembled binary porphyrin nanotubes revealed by resonance Raman spectroscopy. , 2010, Physical chemistry chemical physics : PCCP.

[20]  Tao Zhang,et al.  Structural parameters and vibrational spectra of a series of zinc meso-phenylporphyrins: a DFT and experimental study. , 2010, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[21]  Ximing Guo,et al.  The photochemical and electrochemical properties of chiral porphyrin dimer and self-aggregate nanorods of cobalt(II) porphyrin dimer , 2010 .

[22]  X. Guo Effect of solvent influence on J-aggregate of tetra-p-hydroxyphenylporphyrin (THPP) under different pH , 2008 .

[23]  Leann Tilley,et al.  Resonance Raman spectroscopy can detect structural changes in haemozoin (malaria pigment) following incubation with chloroquine in infected erythrocytes , 2008, FEBS letters.

[24]  H. Lang,et al.  Ni(2+) selective sensors based on meso-tetrakis-{4-[tris-(4-allyl dimethylsilyl-phenyl)-silyl]-phenyl}porphyrin and (sal)(2)trien in poly(vinyl chloride) matrix. , 2007, Talanta.

[25]  Přemysl Fitl,et al.  Deposition of organic metalocomplexes for sensor applications by MAPLE , 2007 .

[26]  E. Fagadar-Cosma,et al.  Combinatorial synthesis and characterization of new asymmetric porphyrins as potential photosensitizers in photodynamic therapy. , 2007, Combinatorial chemistry & high throughput screening.

[27]  I. Mihailescu,et al.  MAPLE applications in studying organic thin films , 2007 .

[28]  Tsuneo Sato,et al.  Simple and rapid determination of histamine in food using a new histamine dehydrogenase from Rhizobium sp. , 2005, Analytical biochemistry.

[29]  Zhiying Li,et al.  DFT study on the influence of meso-phenyl substitution on the geometric, electronic structure and vibrational spectra of free base porphyrin , 2005 .

[30]  K. Kadish,et al.  Electrochemistry of porphyrins and related macrocycles , 2003 .

[31]  R. A. McGill,et al.  Laser deposition of polymer and biomaterial films. , 2003, Chemical reviews.

[32]  T. Spiro,et al.  Computational Modeling of Metalloporphyrin Structure and Vibrational Spectra: Porphyrin Ruffling in NiTPP , 2000 .

[33]  A. Fujishima,et al.  Electrochemical oxidation of histamine and serotonin at highly boron-doped diamond electrodes. , 2000, Analytical chemistry.

[34]  C. Lionetti,et al.  Histamine and histidine determination in tuna fish samples using high-performance liquid chromatography. Derivatization with omicron-phthalaldehyde and fluorescence detection or UV detection of "free" species. , 1998, Journal of chromatography. A.

[35]  G. Palleschi,et al.  Determination of biogenic amines with an electrochemical biosensor and its application to salted anchovies , 1998 .

[36]  Sara Tombelli,et al.  Electrochemical biosensors for biogenic amines: a comparison between different approaches , 1998 .

[37]  H. Franzen,et al.  Electrocatalysis of Anodic Oxygen-Transfer Reactions: Bi 3 Ru 3 O 11 Electrodes in Acidic Media , 1997 .

[38]  M.H.Silla Santos,et al.  Biogenic amines: their importance in foods. , 1996, International journal of food microbiology.

[39]  R. Wightman,et al.  Electrochemical detection of histamine and 5-hydroxytryptamine at isolated mast cells. , 1995, Analytical chemistry.

[40]  R. Wightman,et al.  Fast-scan cyclic voltammetry of 5-hydroxytryptamine. , 1995, Analytical chemistry.

[41]  G. Lercker,et al.  Improvement of extraction procedure for biogenic amines in foods and their high-performance liquid chromatographic determination. , 1992, Journal of chromatography.

[42]  K. Ravichandran,et al.  Chemically modified carbon paste electrodes , 1981 .

[43]  D. M. Shepherd,et al.  THE EFFECT OF TRICHLOROACETIC ACID ON THE PAPER CHROMATOGRAPHY OF TISSUE AMINES , 1961, The Journal of pharmacy and pharmacology.

[44]  S. McGlynn Energetics Of Molecular Complexes , 1958 .

[45]  Yuhua Shi,et al.  Synthesis and different substituent effects on spectral and electrochemical properties of porphyrin nicotinic acid binary compounds , 2009 .

[46]  Armağan Önal,et al.  A review: Current analytical methods for the determination of biogenic amines in foods , 2007 .

[47]  John H. T. Luong,et al.  Multiwall Carbon Nanotube (MWCNT) Based Electrochemical Biosensors for Mediatorless Detection of Putrescine , 2005 .

[48]  H. A. Abreu,et al.  pKa calculation of poliprotic acid: histamine , 2004 .

[49]  Xiaoyuan Li,et al.  Consistent porphyrin force field. 1. Normal-mode analysis for nickel porphine and nickel tetraphenylporphine from resonance Raman and infrared spectra and isotope shifts , 1990 .