General fractional-order anomalous diffusion with non-singular power-law kernel

In this paper, we investigate general fractional derivatives with a non-singular power-law kernel. The anomalous diffusion models with non-singular power-law kernel are discussed in detail. The results are efficient for modelling the anomalous behaviors within the frameworks of the Riemann-Liouville and Liouville-Caputo general fractional derivatives.

[1]  Feng Gao,et al.  Fractional Maxwell fluid with fractional derivative without singular kernel , 2016 .

[2]  H. Srivastava,et al.  Local Fractional Integral Transforms and Their Applications , 2015 .

[3]  H. M. Srivastava,et al.  Some new applications for heat and fluid flows via fractional derivatives without singular kernel , 2016 .

[4]  F. Mainardi Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models , 2010 .

[5]  Wojbor A. Woyczyński,et al.  Models of anomalous diffusion: the subdiffusive case , 2005 .

[6]  J. A. Tenreiro Machado,et al.  A NEW FRACTIONAL DERIVATIVE WITHOUT SINGULAR KERNEL Application to the Modelling of the Steady Heat Flow , 2015, 1601.01623.

[7]  XIAO-JUN YANG,et al.  NEW GENERAL FRACTIONAL-ORDER RHEOLOGICAL MODELS WITH KERNELS OF MITTAG-LEFFLER FUNCTIONS , 2017 .

[8]  J. Klafter,et al.  Anomalous Diffusion and Relaxation Close to Thermal Equilibrium: A Fractional Fokker-Planck Equation Approach , 1999 .

[9]  Solomon,et al.  Observation of anomalous diffusion and Lévy flights in a two-dimensional rotating flow. , 1993, Physical review letters.

[10]  周建和,et al.  Anomalous Diffusion in Disordered Media , 2000 .

[11]  A. Atangana,et al.  New Fractional Derivatives with Nonlocal and Non-Singular Kernel: Theory and Application to Heat Transfer Model , 2016, 1602.03408.

[12]  Xiao‐Jun Yang,et al.  Fractional derivatives of constant and variable orders applied to anomalous relaxation models in heat-transfer problems , 2016, 1612.03202.

[13]  J. Bouchaud,et al.  Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications , 1990 .

[14]  M. Caputo,et al.  A new Definition of Fractional Derivative without Singular Kernel , 2015 .

[15]  M. Shlesinger,et al.  Stochastic pathway to anomalous diffusion. , 1987, Physical review. A, General physics.

[16]  Feng Gao,et al.  General fractional calculus in non-singular power-law kernel applied to model anomalous diffusion phenomena in heat transfer problems , 2017 .

[17]  Tsallis,et al.  Anomalous diffusion in the presence of external forces: Exact time-dependent solutions and their thermostatistical basis. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  DUMITRU BALEANU,et al.  ANOMALOUS DIFFUSION MODELS WITH GENERAL FRACTIONAL DERIVATIVES WITHIN THE KERNELS OF THE EXTENDED MITTAG-LEFFLER TYPE FUNCTIONS , 2017 .

[19]  S. Arabia,et al.  Properties of a New Fractional Derivative without Singular Kernel , 2015 .

[20]  H. Kober ON FRACTIONAL INTEGRALS AND DERIVATIVES , 1940 .

[21]  Aimin Yang,et al.  On steady heat flow problem involving Yang-Srivastava-Machado fractional derivative without singular kernel , 2016 .