General fractional-order anomalous diffusion with non-singular power-law kernel
暂无分享,去创建一个
Hari M. Srivastava | Delfim F. M. Torres | Amar Debbouche | Xiao-Jun Yang | H. Srivastava | Xiao‐Jun Yang | A. Debbouche | Xiao-jun Yang
[1] Feng Gao,et al. Fractional Maxwell fluid with fractional derivative without singular kernel , 2016 .
[2] H. Srivastava,et al. Local Fractional Integral Transforms and Their Applications , 2015 .
[3] H. M. Srivastava,et al. Some new applications for heat and fluid flows via fractional derivatives without singular kernel , 2016 .
[4] F. Mainardi. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models , 2010 .
[5] Wojbor A. Woyczyński,et al. Models of anomalous diffusion: the subdiffusive case , 2005 .
[6] J. A. Tenreiro Machado,et al. A NEW FRACTIONAL DERIVATIVE WITHOUT SINGULAR KERNEL Application to the Modelling of the Steady Heat Flow , 2015, 1601.01623.
[7] XIAO-JUN YANG,et al. NEW GENERAL FRACTIONAL-ORDER RHEOLOGICAL MODELS WITH KERNELS OF MITTAG-LEFFLER FUNCTIONS , 2017 .
[8] J. Klafter,et al. Anomalous Diffusion and Relaxation Close to Thermal Equilibrium: A Fractional Fokker-Planck Equation Approach , 1999 .
[9] Solomon,et al. Observation of anomalous diffusion and Lévy flights in a two-dimensional rotating flow. , 1993, Physical review letters.
[10] 周建和,et al. Anomalous Diffusion in Disordered Media , 2000 .
[11] A. Atangana,et al. New Fractional Derivatives with Nonlocal and Non-Singular Kernel: Theory and Application to Heat Transfer Model , 2016, 1602.03408.
[12] Xiao‐Jun Yang,et al. Fractional derivatives of constant and variable orders applied to anomalous relaxation models in heat-transfer problems , 2016, 1612.03202.
[13] J. Bouchaud,et al. Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications , 1990 .
[14] M. Caputo,et al. A new Definition of Fractional Derivative without Singular Kernel , 2015 .
[15] M. Shlesinger,et al. Stochastic pathway to anomalous diffusion. , 1987, Physical review. A, General physics.
[16] Feng Gao,et al. General fractional calculus in non-singular power-law kernel applied to model anomalous diffusion phenomena in heat transfer problems , 2017 .
[17] Tsallis,et al. Anomalous diffusion in the presence of external forces: Exact time-dependent solutions and their thermostatistical basis. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[18] DUMITRU BALEANU,et al. ANOMALOUS DIFFUSION MODELS WITH GENERAL FRACTIONAL DERIVATIVES WITHIN THE KERNELS OF THE EXTENDED MITTAG-LEFFLER TYPE FUNCTIONS , 2017 .
[19] S. Arabia,et al. Properties of a New Fractional Derivative without Singular Kernel , 2015 .
[20] H. Kober. ON FRACTIONAL INTEGRALS AND DERIVATIVES , 1940 .
[21] Aimin Yang,et al. On steady heat flow problem involving Yang-Srivastava-Machado fractional derivative without singular kernel , 2016 .