Parameterized Algorithms for Feedback Vertex Set

We present an algorithm for the parameterized feedback vertex set problem that runs in time \(O((2\lg{k}+ 2\lg{\lg{k}+ 18})^k n^2)\). This improves the previous \(O(max\{12^k, (4\lg{k})^k\}n^{\omega})\) algorithm by Raman et al. by roughly a 2 k factor (n w ∈ O(n 2.376) is the time needed to multiply two n × n matrices). Our results are obtained by developing new combinatorial tools and employing results from extremal graph theory. We also show that for several special classes of graphs the feedback vertex set problem can be solved in time c k n O(1) for some constant c. This includes, for example, graphs of genus \(O(\lg{n})\).

[1]  Frank Harary,et al.  Graph Theory , 2016 .

[2]  Reuven Bar-Yehuda,et al.  Approximation Algorithms for the Feedback Vertex Set Problem with Applications to Constraint Satisfaction and Bayesian Inference , 1998, SIAM J. Comput..

[3]  Hans L. Bodlaender,et al.  On Disjoint Cycles , 1991, Int. J. Found. Comput. Sci..

[4]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[5]  Toshihiro Fujito,et al.  A Note on Approximation of the Vertex Cover and Feedback Vertex Set Problems - Unified Approach , 1996, Inf. Process. Lett..

[6]  A. Thomason An extremal function for contractions of graphs , 1984, Mathematical Proceedings of the Cambridge Philosophical Society.

[7]  Reuven Bar-Yehuda,et al.  Random Algorithms for the Loop Cutset Problem , 1999, UAI.

[8]  M. Simonovits,et al.  Cycles of even length in graphs , 1974 .

[9]  Carsten Thomassen Girth in graphs , 1983, J. Comb. Theory, Ser. B.

[10]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[11]  Joseph Naor,et al.  Approximating Minimum Feedback Sets and Multicuts in Directed Graphs , 1998, Algorithmica.

[12]  B. Bollobás,et al.  Extremal Graph Theory , 2013 .

[13]  Reuven Bar-Yehuda,et al.  Randomized Algorithms for the Loop Cutset Problem , 2000, J. Artif. Intell. Res..

[14]  Melvin A. Breuer,et al.  BALLAST: a methodology for partial scan design , 1989, [1989] The Nineteenth International Symposium on Fault-Tolerant Computing. Digest of Papers.

[15]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[16]  Dimitrios M. Thilikos,et al.  Dominating sets in planar graphs: branch-width and exponential speed-up , 2003, SODA '03.

[17]  Bruce A. Reed,et al.  Packing directed circuits , 1996, Comb..

[18]  Piotr Berman,et al.  A 2-Approximation Algorithm for the Undirected Feedback Vertex Set Problem , 1999, SIAM J. Discret. Math..

[19]  A. Kostochka The minimum Hadwiger number for graphs with a given mean degree of vertices , 1982 .

[20]  Miklós Simonovits,et al.  On a class of degenerate extremal graph problems , 1983, Comb..

[21]  Arno Kunzmann,et al.  An analytical approach to the partial scan problem , 1990, J. Electron. Test..

[22]  Melvin A. Breuer,et al.  The BALLAST Methodology for Structured Partial Scan Design , 1990, IEEE Trans. Computers.

[23]  Saket Saurabh,et al.  Faster Fixed Parameter Tractable Algorithms for Undirected Feedback Vertex Set , 2002, ISAAC.

[24]  Michael R. Fellows,et al.  Fixed Parameter Tractability and Completeness , 1992, Complexity Theory: Current Research.

[25]  Weijia Jia,et al.  Vertex Cover: Further Observations and Further Improvements , 2001, J. Algorithms.

[26]  Paul D. Seymour,et al.  Packing directed circuits fractionally , 1995, Comb..

[27]  P. Erd Os,et al.  On the maximal number of disjoint circuits of a graph , 2022, Publicationes Mathematicae Debrecen.

[28]  Alon Itai,et al.  Finding a minimum circuit in a graph , 1977, STOC '77.