The evolution of the hypotetraploid Catolobus pendulus genome – the poorly known sister species of Capsella

The establishment of Arabidopsis as the most important plant model has also brought other crucifer species into the spotlight of comparative research. While the genus Capsella has become a prominent crucifer model system, its closest relative has been overlooked. The unispecific genus Catolobus is native to temperate Eurasian woodlands, from eastern Europe to the Russian Far East. Here, we analyzed chromosome number, genome structure, intraspecific genetic variation, and habitat suitability of Catolobus pendulus throughout its range. Unexpectedly, all analyzed populations were hypotetraploid (2n = 30, ~330 Mb). Comparative cytogenomic analysis revealed that the Catolobus genome arose by a whole-genome duplication in a diploid genome resembling Ancestral Crucifer Karyotype (ACK, n = 8). In contrast to the much younger Capsella allotetraploid genomes, the presumably autotetraploid Catolobus genome (2n = 32) arose early after the Catolobus/Capsella divergence. Since its origin, the tetraploid Catolobus genome has undergone chromosomal rediploidization, including a reduction in chromosome number from 2n = 32 to 2n = 30. Diploidization occurred through end-to-end chromosome fusion and other chromosomal rearrangements affecting a total of six of 16 ancestral chromosomes. The hypotetraploid Catolobus cytotype expanded toward its present range, accompanied by some longitudinal genetic differentiation. The sister relationship between Catolobus and Capsella allows comparative studies of tetraploid genomes of contrasting ages and different degrees of genome diploidization.

[1]  I. Al‐Shehbaz,et al.  An updated classification of the Brassicaceae (Cruciferae) , 2023, PhytoKeys.

[2]  E. Welk,et al.  Origin of the central European steppe flora: insights from palaeodistribution modelling and migration simulations , 2022, Ecography.

[3]  F. Forest,et al.  Global Phylogeny of the Brassicaceae Provides Important Insights into Gene Discordance , 2022, bioRxiv.

[4]  M. Lysak,et al.  Idahoa and Subularia: the hidden polyploid origins of two enigmatic crucifer genera. , 2022, American journal of botany.

[5]  I. Al‐Shehbaz,et al.  Genome diploidization associates with cladogenesis, trait disparity, and plastid gene evolution. , 2022, Plant physiology.

[6]  M. Lascoux,et al.  Competitive ability depends on mating system and ploidy level across Capsella species , 2022, Annals of botany.

[7]  Lakshay Anand,et al.  ChromoMap: an R package for interactive visualization of multi-omics data and annotation of chromosomes , 2022, BMC Bioinformatics.

[8]  K. Olsen,et al.  Chloroplast phylogenomics in Camelina (Brassicaceae) reveals multiple origins of polyploid species and the maternal lineage of C. sativa , 2022, Horticulture research.

[9]  Y. Güzel Current nomenclature and systematics of Capsella Medik. with lectotypifications:towards solving the puzzle , 2022, Turkish Journal of Botany.

[10]  D. Breecker,et al.  Regional Patterns in Miocene‐Pliocene Aridity Across the Chinese Loess Plateau Revealed by High Resolution Records of Paleosol Carbonate and Occluded Organic Matter , 2021, Paleoceanography and Paleoclimatology.

[11]  E. Nevo,et al.  Genome evolution of the psammophyte Pugionium for desert adaptation and further speciation , 2021, Proceedings of the National Academy of Sciences of the United States of America.

[12]  J. Hess,et al.  Taxon‐specific or universal? Using target capture to study the evolutionary history of rapid radiations , 2021, bioRxiv.

[13]  H. Hurka,et al.  Pleistocene dynamics of the Eurasian steppe as a driving force of evolution: Phylogenetic history of the genus Capsella (Brassicaceae) , 2021, Ecology and evolution.

[14]  F. Forest,et al.  The best of both worlds: Combining lineage‐specific and universal bait sets in target‐enrichment hybridization reactions , 2021, Applications in plant sciences.

[15]  V. Savolainen,et al.  Joining forces in Ochnaceae phylogenomics: a tale of two targeted sequencing probe kits. , 2021, American journal of botany.

[16]  Matthew G. Johnson,et al.  On the potential of Angiosperms353 for population genomic studies , 2021, Applications in plant sciences.

[17]  A. Kantor,et al.  Allele Sorting as a Novel Approach to Resolving the Origin of Allotetraploids Using Hyb-Seq Data: A Case Study of the Balkan Mountain Endemic Cardamine barbaraeoides , 2021, Frontiers in Plant Science.

[18]  P. Bork,et al.  Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation , 2021, Nucleic Acids Res..

[19]  M. Turelli,et al.  ENMTools 1.0: an R package for comparative ecological biogeography , 2021, Ecography.

[20]  Marek Svitok,et al.  So Closely Related and Yet So Different: Strong Contrasts Between the Evolutionary Histories of Species of the Cardamine pratensis Polyploid Complex in Central Europe , 2020, Frontiers in Plant Science.

[21]  M. Fishbein,et al.  Enabling evolutionary studies at multiple scales in Apocynaceae through Hyb‐Seq , 2020, Applications in plant sciences.

[22]  M. Malinsky,et al.  Dsuite ‐ Fast D‐statistics and related admixture evidence from VCF files , 2020, Molecular ecology resources.

[23]  M. Logacheva,et al.  Assembly and Analysis of the Complete Mitochondrial Genome of Capsella bursa-pastoris , 2020, Plants.

[24]  JAN T. Kim,et al.  Tackling Rapid Radiations With Targeted Sequencing , 2020, Frontiers in Plant Science.

[25]  Mark N. Puttick,et al.  MCMCtreeR: functions to prepare MCMCtree analyses and visualize posterior ages on trees , 2019, Bioinform..

[26]  H. Hurka,et al.  The Eurasian steppe belt in time and space: Phylogeny and historical biogeography of the false flax (Camelina Crantz, Camelineae, Brassicaceae) , 2019, Flora.

[27]  C. dePamphilis,et al.  GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes , 2019, bioRxiv.

[28]  C. Garzione,et al.  Central Asian Drying at 3.3 Ma Linked to Tropical Forcing? , 2019, Geophysical Research Letters.

[29]  I. Al‐Shehbaz,et al.  Origin and Evolution of Diploid and Allopolyploid Camelina Genomes Were Accompanied by Chromosome Shattering , 2019, Plant Cell.

[30]  L. Østergaard,et al.  Fruit development and diversification , 2019, Current Biology.

[31]  S. Herrando‐Moraira,et al.  Nuclear and plastid DNA phylogeny of tribe Cardueae (Compositae) with Hyb-Seq data: A new subtribal classification and a temporal diversification framework. , 2019, Molecular phylogenetics and evolution.

[32]  F. Forest,et al.  A Target Capture-Based Method to Estimate Ploidy From Herbarium Specimens , 2019, Front. Plant Sci..

[33]  Xiangchao Gan,et al.  Resolving the backbone of the Brassicaceae phylogeny for investigating trait diversity. , 2019, The New phytologist.

[34]  H. Maat,et al.  Hidden Rice Diversity in the Guianas , 2019, bioRxiv.

[35]  R. Bock,et al.  OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes , 2019, bioRxiv.

[36]  M. Lascoux,et al.  Parental legacy, demography, and admixture influenced the evolution of the two subgenomes of the tetraploid Capsella bursa-pastoris (Brassicaceae) , 2019, PLoS genetics.

[37]  A. Haywood,et al.  PaleoClim, high spatial resolution paleoclimate surfaces for global land areas , 2018, Scientific Data.

[38]  Xuefa Shi,et al.  Increased seasonality and aridity drove the C4 plant expansion in Central Asia since the Miocene–Pliocene boundary , 2018, Earth and Planetary Science Letters.

[39]  Matthew G. Johnson,et al.  Bridging the micro- and macroevolutionary levels in phylogenomics: Hyb-Seq solves relationships from populations to species and above. , 2018, The New phytologist.

[40]  Matthew G. Johnson,et al.  A Universal Probe Set for Targeted Sequencing of 353 Nuclear Genes from Any Flowering Plant Designed Using k-Medoids Clustering , 2018, bioRxiv.

[41]  Christophe Klopp,et al.  D-GENIES: dot plot large genomes in an interactive, efficient and simple way , 2018, PeerJ.

[42]  M. Lascoux,et al.  Competitive ability of Capsella species with different mating systems and ploidy levels , 2018, Annals of botany.

[43]  M. Lysak,et al.  Post-polyploid diploidization and diversification through dysploid changes. , 2018, Current opinion in plant biology.

[44]  Matthew W. Hahn,et al.  Gene-tree reconciliation with MUL-trees to resolve polyploidy events , 2016, bioRxiv.

[45]  I. Mayrose,et al.  Multispeed genome diploidization and diversification after an ancient allopolyploidization , 2017, Molecular ecology.

[46]  N. Zimmermann,et al.  Habitat Suitability and Distribution Models: With Applications in R , 2017 .

[47]  A. von Haeseler,et al.  UFBoot2: Improving the Ultrafast Bootstrap Approximation , 2017, bioRxiv.

[48]  Oscar M. Vargas,et al.  Conflicting phylogenomic signals reveal a pattern of reticulate evolution in a recent high-Andean diversification (Asteraceae: Astereae: Diplostephium). , 2017, The New phytologist.

[49]  Clemens L. Weiß,et al.  nQuire: a statistical framework for ploidy estimation using next generation sequencing , 2017, bioRxiv.

[50]  Axel Fischer,et al.  GeSeq – versatile and accurate annotation of organelle genomes , 2017, Nucleic Acids Res..

[51]  John Novembre,et al.  Pritchard, Stephens, and Donnelly on Population Structure , 2016, Genetics.

[52]  Zhiqiang Wu,et al.  Limited variation across two chloroplast genomes with finishing chloroplast genome of Capsella grandiflora , 2016, Mitochondrial DNA. Part A, DNA mapping, sequencing, and analysis.

[53]  Olaf Conrad,et al.  Climatologies at high resolution for the earth’s land surface areas , 2016, Scientific Data.

[54]  Zhiqiang Wu The complete chloroplast genome of Capsella rubella , 2016, Mitochondrial DNA. Part A, DNA mapping, sequencing, and analysis.

[55]  M. Lysak,et al.  Chromosome Preparation for Cytogenetic Analyses in Arabidopsis. , 2016, Current protocols in plant biology.

[56]  M. Lysak,et al.  How diploidization turned a tetraploid into a pseudotriploid. , 2016, American journal of botany.

[57]  M. Lysak,et al.  Comparative paleogenomics of crucifers: ancestral genomic blocks revisited. , 2016, Current opinion in plant biology.

[58]  M. Lysak,et al.  Painting of Arabidopsis Chromosomes with Chromosome-Specific BAC Clones. , 2016, Current protocols in plant biology.

[59]  Simon R. Harris,et al.  SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments , 2016, bioRxiv.

[60]  Marek L Borowiec,et al.  AMAS: a fast tool for alignment manipulation and computing of summary statistics , 2016, PeerJ.

[61]  Yang Zhong,et al.  Resolution of Brassicaceae Phylogeny Using Nuclear Genes Uncovers Nested Radiations and Supports Convergent Morphological Evolution , 2015, Molecular biology and evolution.

[62]  M. Koch,et al.  A Time-Calibrated Road Map of Brassicaceae Species Radiation and Evolutionary History[OPEN] , 2015, Plant Cell.

[63]  Justin Zobel,et al.  Bandage: interactive visualization of de novo genome assemblies , 2015, bioRxiv.

[64]  D. Weigel,et al.  Beyond the thale: comparative genomics and genetics of Arabidopsis relatives , 2015, Nature Reviews Genetics.

[65]  Qiong Wu,et al.  Frequent introgressions from diploid species contribute to the adaptation of the tetraploid Shepherd's purse (Capsella bursa-pastoris). , 2015, Molecular plant.

[66]  P. Kück,et al.  FASconCAT-G: extensive functions for multiple sequence alignment preparations concerning phylogenetic studies , 2014, Frontiers in Zoology.

[67]  Robert P. Anderson,et al.  Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models , 2014 .

[68]  Mark Fishbein,et al.  Hyb-Seq: Combining target enrichment and genome skimming for plant phylogenomics , 2014, Applications in plant sciences.

[69]  M. Lascoux,et al.  Hybrid origins and the earliest stages of diploidization in the highly successful recent polyploid Capsella bursa-pastoris , 2014, Proceedings of the National Academy of Sciences.

[70]  P. Kuneš,et al.  Migration Patterns of Subgenus Alnus in Europe since the Last Glacial Maximum: A Systematic Review , 2014, PloS one.

[71]  Matthew J. Smith,et al.  Protected areas network is not adequate to protect a critically endangered East Africa Chelonian: Modelling distribution of pancake tortoise, Malacochersus tornieri under current and future climates , 2013, bioRxiv.

[72]  Swapan Mallick,et al.  Ancient Admixture in Human History , 2012, Genetics.

[73]  David Reich,et al.  Testing for ancient admixture between closely related populations. , 2011, Molecular biology and evolution.

[74]  M. Lysak,et al.  Island species radiation and karyotypic stasis in Pachycladon allopolyploids , 2010, BMC Evolutionary Biology.

[75]  Martin Krzywinski,et al.  Fast Diploidization in Close Mesopolyploid Relatives of Arabidopsis[W][OA] , 2010, Plant Cell.

[76]  Philip L. F. Johnson,et al.  A Draft Sequence of the Neandertal Genome , 2010, Science.

[77]  D. Weigel,et al.  Recent speciation of Capsella rubella from Capsella grandiflora, associated with loss of self-incompatibility and an extreme bottleneck , 2009, Proceedings of the National Academy of Sciences.

[78]  E. Stahl,et al.  Recent speciation associated with the evolution of selfing in Capsella , 2009, Proceedings of the National Academy of Sciences.

[79]  Ilia J Leitch,et al.  The dynamic ups and downs of genome size evolution in Brassicaceae. , 2008, Molecular biology and evolution.

[80]  E. Kellogg,et al.  Brassicaceae phylogeny inferred from phytochrome A and ndhF sequence data: tribes and trichomes revisited. , 2008, American journal of botany.

[81]  R. Schmickl,et al.  Arabidopsis thaliana's wild relatives : an updated overview on systematics, taxonomy and evolution , 2008 .

[82]  Ziheng Yang PAML 4: phylogenetic analysis by maximum likelihood. , 2007, Molecular biology and evolution.

[83]  Noah A. Rosenberg,et al.  CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure , 2007, Bioinform..

[84]  Charles James Nice Bailey,et al.  Toward a global phylogeny of the Brassicaceae. , 2006, Molecular biology and evolution.

[85]  T. Mitchell-Olds,et al.  The ABC's of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. , 2006, Trends in plant science.

[86]  E. Kellogg,et al.  Systematics and phylogeny of the Brassicaceae (Cruciferae): an overview , 2006, Plant Systematics and Evolution.

[87]  S. Warwick,et al.  Phylogenetic position of Arabis arenicola and generic limits of Aphragmus and Eutrema (Brassicaceae) based on sequences of nuclear ribosomal DNA , 2006 .

[88]  E. Kellogg,et al.  Brassicaceae phylogeny and trichome evolution. , 2006, American journal of botany.

[89]  Robert P. Anderson,et al.  Maximum entropy modeling of species geographic distributions , 2006 .

[90]  G. Evanno,et al.  Detecting the number of clusters of individuals using the software structure: a simulation study , 2005, Molecular ecology.

[91]  N. Rosenberg distruct: a program for the graphical display of population structure , 2003 .

[92]  T. Mitchell-Olds,et al.  Multiple hybrid formation in natural populations: concerted evolution of the internal transcribed spacer of nuclear ribosomal DNA (ITS) in North American Arabis divaricarpa (Brassicaceae). , 2003, Molecular biology and evolution.

[93]  I. Al‐Shehbaz Transfer of most North American species of Arabis to Boechera (Brassicaceae) , 2003 .

[94]  I. Al‐Shehbaz,et al.  Phylogenetic Position and Generic Limits of Arabidopsis (Brassicaceae) Based on Sequences of Nuclear Ribosomal DNA , 2003 .

[95]  K. Mummenhoff,et al.  Thlaspi s.str. (Brassicaceae) versus Thlaspi s.l.: morphological and anatomical characters in the light of ITS nrDNA sequence data , 2001, Plant Systematics and Evolution.

[96]  The Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana , 2000, Nature.

[97]  M. Koch,et al.  Molecular data reveal convergence in fruit characters used in the classification of Thlaspi s. l. (Brassicaceae) , 1997 .

[98]  John Bell,et al.  A review of methods for the assessment of prediction errors in conservation presence/absence models , 1997, Environmental Conservation.

[99]  J A Swets,et al.  Measuring the accuracy of diagnostic systems. , 1988, Science.

[100]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[101]  OUP accepted manuscript , 2022, Nucleic Acids Research.

[102]  M. Oliva,et al.  The Pyrenees: glacial landforms prior to the Last Glacial Maximum , 2022, European Glacial Landscapes.

[103]  M. Winsborrow,et al.  The Eurasian Arctic: glacial landforms from the Last Glacial Maximum , 2022, European Glacial Landscapes.

[104]  Occdownload Gbif.Org GBIF Occurrence Download , 2018 .

[105]  Theunis Piersma,et al.  The interplay between habitat availability and population differentiation , 2012 .

[106]  C. Kiefer,et al.  Supernetwork identifies multiple events of plastid trnF(GAA) pseudogene evolution in the Brassicaceae. , 2007, Molecular biology and evolution.

[107]  I. Al‐Shehbaz Nomenclatural notes on Eurasian Arabis (Brassicaceae) , 2005 .

[108]  P. Raven,et al.  Brassicaceae through Saxifragaceae , 2001 .

[109]  I. Al‐Shehbaz The genera of Lepidieae lCruciferaes Brassicaceaer in the southeastern United States , 1986 .