Newton-Type Methods for Optimization Problems without Constraint Qualifications

We consider equality-constrained optimization problems, where a given solution may not satisfy any constraint qualification but satisfies the standard second-order sufficient condition for optimality. Based on local identification of the rank of the constraints degeneracy via the singular-value decomposition, we derive a modified primal-dual optimality system whose solution is locally unique, nondegenerate, and thus can be found by standard Newton-type techniques. Using identification of active constraints, we further extend our approach to mixed equality- and inequality-constrained problems, and to mathematical programs with complementarity constraints (MPCC). In particular, for MPCC we obtain a local algorithm with quadratic convergence under the second-order sufficient condition only, without any constraint qualifications, not even the special MPCC constraint qualifications.

[1]  William W. Hager,et al.  Stability in the presence of degeneracy and error estimation , 1999, Math. Program..

[2]  Mihai Anitescu,et al.  A Superlinearly Convergent Sequential Quadratically Constrained Quadratic Programming Algorithm for Degenerate Nonlinear Programming , 2002, SIAM J. Optim..

[3]  Alexey F. Izmailov Lagrange methods for finding degenerate solutions of conditional extremum problems , 1996 .

[4]  Stefan Scholtes,et al.  Mathematical Programs with Complementarity Constraints: Stationarity, Optimality, and Sensitivity , 2000, Math. Oper. Res..

[5]  Stephen J. Wright Modifying SQP for Degenerate Problems , 2002, SIAM J. Optim..

[6]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[7]  Andreas Fischer,et al.  Modified Wilson's Method for Nonlinear Programs with Nonunique Multipliers , 1999, Math. Oper. Res..

[8]  William W. Hager,et al.  Stabilized Sequential Quadratic Programming , 1999, Comput. Optim. Appl..

[9]  Alexey F. Izmailov,et al.  The Theory of 2-Regularity for Mappings with Lipschitzian Deriatives and its Applications to Optimality Conditions , 2002, Math. Oper. Res..

[10]  Stephen J. Wright An Algorithm for Degenerate Nonlinear Programming with Rapid Local Convergence , 2005, SIAM J. Optim..

[11]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[12]  Stephen J. Wright Superlinear Convergence of a Stabilized SQP Method to a Degenerate Solution , 1998, Comput. Optim. Appl..

[13]  Mihai Anitescu,et al.  On the rate of convergence of sequential quadratic programming with nondifferentiable exact penalty function in the presence of constraint degeneracy , 2002, Math. Program..

[14]  Michael C. Ferris,et al.  Feasible descent algorithms for mixed complementarity problems , 1999, Math. Program..

[15]  Peter Deuflhard,et al.  Numerische Mathematik. I , 2002 .

[16]  Alexey F. Izmailov,et al.  Superlinearly Convergent Algorithms for Solving Singular Equations and Smooth Reformulations of Complementarity Problems , 2002, SIAM J. Optim..

[17]  Christian Kanzow,et al.  Strictly feasible equation-based methods for mixed complementarity problems , 2001, Numerische Mathematik.

[18]  M. Anitescu NONLINEAR PROGRAMS WITH UNBOUNDED LAGRANGE MULTIPLIER SETS , 2000 .

[19]  Mikhail V. Solodov,et al.  On the Sequential Quadratically Constrained Quadratic Programming Methods , 2004, Math. Oper. Res..

[20]  M. Anitescu On Solving Mathematical Programs With Complementarity Constraints As Nonlinear Programs , 2002 .

[21]  Francisco Facchinei,et al.  A semismooth equation approach to the solution of nonlinear complementarity problems , 1996, Math. Program..

[22]  Sven Leyffer,et al.  Solving mathematical programs with complementarity constraints as nonlinear programs , 2004, Optim. Methods Softw..

[23]  Francisco Facchinei,et al.  A Theoretical and Numerical Comparison of Some Semismooth Algorithms for Complementarity Problems , 2000, Comput. Optim. Appl..

[24]  Francisco Facchinei,et al.  On the Accurate Identification of Active Constraints , 1998, SIAM J. Optim..

[25]  Tosio Kato Perturbation theory for linear operators , 1966 .

[26]  A. F. Izmailov,et al.  Construction of defining systems for finding singular solutions to nonlinear equations , 2002 .

[27]  Stefan Scholtes,et al.  How Stringent Is the Linear Independence Assumption for Mathematical Programs with Complementarity Constraints? , 2001, Math. Oper. Res..

[28]  Masao Fukushima,et al.  A Sequential Quadratically Constrained Quadratic Programming Method for Differentiable Convex Minimization , 2002, SIAM J. Optim..

[29]  S. Scholtes,et al.  Exact Penalization of Mathematical Programs with Equilibrium Constraints , 1999 .

[30]  C. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[31]  F. Facchinei,et al.  Local Feasible QP-Free Algorithms for the Constrained Minimization of SC1 Functions , 2003 .

[32]  Alexey F. Izmailov,et al.  Complementarity Constraint Qualification via the Theory of 2-Regularity , 2002, SIAM J. Optim..

[33]  Alexey F. Izmailov,et al.  Optimality Conditions for Irregular Inequality-Constrained Problems , 2001, SIAM J. Control. Optim..

[34]  Mihai Anitescu,et al.  Degenerate Nonlinear Programming with a Quadratic Growth Condition , 1999, SIAM J. Optim..

[35]  Alexey F. Izmailov,et al.  A Class of Active-Set Newton Methods for Mixed ComplementarityProblems , 2005, SIAM J. Optim..

[36]  Stephen J. Wright,et al.  Superlinear Convergence of an Interior-Point Method Despite Dependent Constraints , 2000, Math. Oper. Res..

[37]  Stephen J. Wright Constraint identification and algorithm stabilization for degenerate nonlinear programs , 2000, Math. Program..

[38]  Sven Leyffer,et al.  Local Convergence of SQP Methods for Mathematical Programs with Equilibrium Constraints , 2006, SIAM J. Optim..

[39]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[40]  Andreas Fischer,et al.  Local behavior of an iterative framework for generalized equations with nonisolated solutions , 2002, Math. Program..

[41]  Bethany L. Nicholson,et al.  Mathematical Programs with Equilibrium Constraints , 2021, Pyomo — Optimization Modeling in Python.

[42]  Christian Kanzow,et al.  A QP-free constrained Newton-type method for variational inequality problems , 1999, Math. Program..