Microstructure Generation via Generative Adversarial Network for Heterogeneous, Topologically Complex 3D Materials

[1]  Gregory A. Hackett,et al.  Distributions of local electrochemistry in heterogeneous microstructures of solid oxide fuel cells using high-performance computations , 2020 .

[2]  Gregory A. Hackett,et al.  High performance modeling of heterogeneous SOFC electrode microstructures using the MOOSE framework: ERMINE (Electrochemical Reactions in MIcrostructural NEtworks) , 2020, MethodsX.

[3]  N. Brandon,et al.  Pores for thought: generative adversarial networks for stochastic reconstruction of 3D multi-phase electrode microstructures with periodic boundaries , 2020, npj Computational Materials.

[4]  Gregory A. Hackett,et al.  Quantitative Analysis of Multi-Scale Heterogeneities in Complex Electrode Microstructures , 2020, Journal of The Electrochemical Society.

[5]  Wei Chen,et al.  A Conditional Generative Model for Predicting Material Microstructures from Processing Methods , 2019, ArXiv.

[6]  Ivan Oseledets,et al.  Microstructure synthesis using style-based generative adversarial networks. , 2019, Physical review. E.

[7]  C. Bouman,et al.  Statistical Methods for Materials Science , 2019 .

[8]  Timo Aila,et al.  A Style-Based Generator Architecture for Generative Adversarial Networks , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  Baskar Ganapathysubramanian,et al.  Physics-aware Deep Generative Models for Creating Synthetic Microstructures , 2018, ArXiv.

[10]  D. Dimiduk,et al.  Perspectives on the Impact of Machine Learning, Deep Learning, and Artificial Intelligence on Materials, Processes, and Structures Engineering , 2018, Integrating Materials and Manufacturing Innovation.

[11]  Gregory A. Hackett,et al.  An efficient approach for prediction of Warburg-type resistance under working currents , 2018, International Journal of Hydrogen Energy.

[12]  Wing Kam Liu,et al.  Computational microstructure characterization and reconstruction: Review of the state-of-the-art techniques , 2018, Progress in Materials Science.

[13]  Gregory A. Hackett,et al.  Mesoscale characterization of local property distributions in heterogeneous electrodes , 2018 .

[14]  Wei Chen,et al.  Microstructural Materials Design Via Deep Adversarial Learning Methodology , 2018, Journal of Mechanical Design.

[15]  Sudipto Mandal,et al.  Generation of statistically representative synthetic three-dimensional microstructures , 2018 .

[16]  Alexander Sergeev,et al.  Horovod: fast and easy distributed deep learning in TensorFlow , 2018, ArXiv.

[17]  Yuichi Yoshida,et al.  Spectral Normalization for Generative Adversarial Networks , 2018, ICLR.

[18]  Sapan Shah,et al.  A Relation Aware Search Engine for Materials Science , 2018, Integrating Materials and Manufacturing Innovation.

[19]  Yi Ren,et al.  Improving direct physical properties prediction of heterogeneous materials from imaging data via convolutional neural network and a morphology-aware generative model , 2017, Computational Materials Science.

[20]  Martin J. Blunt,et al.  Stochastic Reconstruction of an Oolitic Limestone by Generative Adversarial Networks , 2017, Transport in Porous Media.

[21]  Jaakko Lehtinen,et al.  Progressive Growing of GANs for Improved Quality, Stability, and Variation , 2017, ICLR.

[22]  Kaiming He,et al.  Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour , 2017, ArXiv.

[23]  Gregory A Hackett,et al.  Towards Quantification of Local Electrochemical Parameters in Microstructures of Solid Oxide Fuel Cell Electrodes using High Performance Computations , 2017 .

[24]  Gregory A. Hackett,et al.  A Method for Quantitative 3D Mesoscale Analysis of Solid Oxide Fuel Cell Microstructures Using Xe-plasma Focused Ion Beam (PFIB) Coupled with SEM , 2017 .

[25]  David B. Menasche,et al.  Quantifying intermediate‐frequency heterogeneities of SOFC electrodes using X‐ray computed tomography , 2017 .

[26]  Martin J. Blunt,et al.  Reconstruction of three-dimensional porous media using generative adversarial neural networks , 2017, Physical review. E.

[27]  Brian L. DeCost,et al.  Exploring the microstructure manifold: Image texture representations applied to ultrahigh carbon steel microstructures , 2017, 1702.01117.

[28]  Jonathon Shlens,et al.  Conditional Image Synthesis with Auxiliary Classifier GANs , 2016, ICML.

[29]  Vincent Dumoulin,et al.  Deconvolution and Checkerboard Artifacts , 2016 .

[30]  Wojciech Zaremba,et al.  Improved Techniques for Training GANs , 2016, NIPS.

[31]  Martín Abadi,et al.  TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.

[32]  Wei Chen,et al.  Stochastic microstructure characterization and reconstruction via supervised learning , 2016 .

[33]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[34]  Soumith Chintala,et al.  Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks , 2015, ICLR.

[35]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[36]  Simon Osindero,et al.  Conditional Generative Adversarial Nets , 2014, ArXiv.

[37]  M. Groeber,et al.  DREAM.3D: A Digital Representation Environment for the Analysis of Microstructure in 3D , 2014, Integrating Materials and Manufacturing Innovation.

[38]  Wei Chen,et al.  Descriptor-based methodology for statistical characterization and 3D reconstruction of microstructural materials , 2014 .

[39]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[40]  Z Jiang,et al.  Efficient 3D porous microstructure reconstruction via Gaussian random field and hybrid optimization , 2013, Journal of microscopy.

[41]  Surya R. Kalidindi,et al.  Morphological Analyses of Polymer Electrolyte Fuel Cell Electrodes with Nano‐Scale Computed Tomography Imaging , 2013 .

[42]  S. Litster,et al.  Resolving the Three‐Dimensional Microstructure of Polymer Electrolyte Fuel Cell Electrodes using Nanometer‐Scale X‐ray Computed Tomography , 2012 .

[43]  Paul V. Braun,et al.  Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. , 2011, Nature nanotechnology.

[44]  Richard Szeliski,et al.  Computer Vision - Algorithms and Applications , 2011, Texts in Computer Science.

[45]  F. Stillinger,et al.  Modeling heterogeneous materials via two-point correlation functions. II. Algorithmic details and applications. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  Jon M. Hiller,et al.  Three-dimensional reconstruction of a solid-oxide fuel-cell anode , 2006, Nature materials.

[47]  S. Torquato,et al.  Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .

[48]  Stuart B. Adler,et al.  Electrode Kinetics of Porous Mixed‐Conducting Oxygen Electrodes , 1996 .

[49]  Gregory A. Hackett,et al.  Performance Degradation Predictions Based on Microstructural Evolution Due to Grain Coarsening Effects in Solid Oxide Fuel Cell Electrodes , 2018 .

[50]  Justin C. Lytle,et al.  Multifunctional 3D nanoarchitectures for energy storage and conversion. , 2009, Chemical Society reviews.

[51]  高橋 武彦,et al.  Science and technology of ceramic fuel cells , 1995 .