Role of control constraints in quantum optimal control

The problems of optimizing the value of an arbitrary observable of the two-level system at both a fixed time and the shortest possible time is theoretically explored. Complete identification and classification along with comprehensive analysis of globally optimal control policies and traps (i.e. policies which are locally but not globally optimal) is presented. The central question addressed is whether the control landscape remains trap-free if control constraints of the inequality type are imposed. The answer is astonishingly controversial, namely, although formally it is always negative, in practice it is positive provided that the control time is fixed and chosen long enough.

[1]  H. Sussmann,et al.  Control systems on Lie groups , 1972 .

[2]  Herschel Rabitz,et al.  Control landscapes for observable preparation with open quantum systems , 2007, 2007 46th IEEE Conference on Decision and Control.

[3]  U. Boscain,et al.  Time minimal trajectories for a spin 1∕2 particle in a magnetic field , 2005, quant-ph/0512074.

[4]  A. Agrachev,et al.  Control Theory from the Geometric Viewpoint , 2004 .

[5]  Domenico D'Alessandro,et al.  Topological properties of reachable sets and the control of quantum bits , 2000 .

[6]  R. Brockett,et al.  Time optimal control in spin systems , 2000, quant-ph/0006114.

[7]  A. Pechen,et al.  Trap-free manipulation in the Landau-Zener system , 2012, 1304.1357.

[8]  David J Tannor,et al.  Are there traps in quantum control landscapes? , 2011, Physical review letters.

[9]  R. Mannella,et al.  Quantum driving of a two level system: quantum speed limit and superadiabatic protocols – an experimental investigation , 2013 .

[10]  A. Krener The High Order Maximal Principle and Its Application to Singular Extremals , 1977 .

[11]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[12]  G. C. Hegerfeldt,et al.  Driving at the quantum speed limit: optimal control of a two-level system. , 2013, Physical review letters.

[13]  Xiao-Jiang Feng,et al.  Why is chemical synthesis and property optimization easier than expected? , 2011, Physical chemistry chemical physics : PCCP.

[14]  Yacine Chitour,et al.  Time-Optimal Synthesis for Left-Invariant Control Systems on SO(3) , 2005, SIAM J. Control. Optim..

[15]  Sebastian Thallmair,et al.  Optimal control theory--closing the gap between theory and experiment. , 2012, Physical chemistry chemical physics : PCCP.

[16]  B. Piccoli,et al.  Optimal Syntheses for Control Systems on 2-D Manifolds , 2004 .

[18]  Sophie Schirmer,et al.  A CLOSER LOOK AT QUANTUM CONTROL LANDSCAPES AND THEIR IMPLICATION FOR CONTROL OPTIMIZATION , 2013 .

[19]  A. Smerzi,et al.  Experimental realization of quantum zeno dynamics , 2013, Nature Communications.

[20]  Herschel A Rabitz,et al.  Quantum Optimally Controlled Transition Landscapes , 2004, Science.

[21]  Y Zhang,et al.  Singular extremals for the time-optimal control of dissipative spin 1/2 particles. , 2010, Physical review letters.

[22]  Sophie G. Schirmer,et al.  Quantum Control Landscapes: A Closer Look , 2010 .

[23]  F. Nori,et al.  Landau-Zener-Stückelberg interferometry , 2009, 0911.1917.

[24]  Rebing Wu,et al.  Explicitly solvable extremals of time optimal control for 2-level quantum systems , 2002 .

[25]  J. Swoboda Time-optimal Control of Spin Systems , 2006, quant-ph/0601131.

[26]  P. Petroff,et al.  Complete control of a matter qubit using a single picosecond laser pulse , 2012, 1204.0932.

[27]  Herschel Rabitz,et al.  Control landscapes for two-level open quantum systems , 2007, 0710.0604.

[28]  Yoshihisa Yamamoto,et al.  Ultrafast optical control of individual quantum dot spin qubits , 2013, Reports on progress in physics. Physical Society.

[29]  H. Rabitz,et al.  Control of quantum phenomena: past, present and future , 2009, 0912.5121.

[30]  H. Rabitz,et al.  Why do effective quantum controls appear easy to find , 2006 .

[31]  B. Goh Necessary Conditions for Singular Extremals Involving Multiple Control Variables , 1966 .

[32]  A. Agrachev,et al.  SYMPLECTIC METHODS FOR OPTIMIZATION AND CONTROL , 1999 .