The Robust Network Loading Problem Under Hose Demand Uncertainty: Formulation, Polyhedral Analysis, and Computations

We consider the network loading problem (NLP) under a polyhedral uncertainty description of traffic demands. After giving a compact multicommodity flow formulation of the problem, we state a decomposition property obtained from projecting out the flow variables. This property considerably simplifies the resulting polyhedral analysis and computations by doing away with metric inequalities. Then we focus on a specific choice of the uncertainty description, called the “hose model,” which specifies aggregate traffic upper bounds for selected endpoints of the network. We study the polyhedral aspects of the NLP under hose demand uncertainty and use the results as the basis of an efficient branch-and-cut algorithm. The results of extensive computational experiments on well-known network design instances are reported.

[1]  Amit Kumar,et al.  Provisioning a virtual private network: a network design problem for multicommodity flow , 2001, STOC '01.

[2]  Judith Keijsper,et al.  Virtual Private Network Design: A Proof of the Tree Routing Conjecture on Ring Networks , 2007, SIAM J. Discret. Math..

[3]  Navin Goyal,et al.  The VPN Conjecture Is True , 2013, JACM.

[4]  L. Wolsey,et al.  Designing Private Line Networks - Polyhedral Analysis and Computation , 1996 .

[5]  P. Belotti,et al.  Optimal oblivious routing under linear and ellipsoidal uncertainty , 2008 .

[6]  A. Ben-Tal,et al.  Adjustable robust solutions of uncertain linear programs , 2004, Math. Program..

[7]  Thomas L. Magnanti,et al.  Modeling and Solving the Two-Facility Capacitated Network Loading Problem , 1995, Oper. Res..

[8]  Antonio Sassano,et al.  Metric Inequalities and the Network Loading Problem , 2004, IPCO.

[9]  Jean-Yves Potvin,et al.  Tabu Search for a Network Loading Problem with Multiple Facilities , 2000, J. Heuristics.

[10]  Alper Atamtürk,et al.  Two-Stage Robust Network Flow and Design Under Demand Uncertainty , 2007, Oper. Res..

[11]  Rajeev Rastogi,et al.  Restoration algorithms for virtual private networks in the hose model , 2002, Proceedings.Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies.

[12]  Allen L. Soyster,et al.  Technical Note - Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming , 1973, Oper. Res..

[13]  G. Nemhauser,et al.  Integer Programming , 2020 .

[14]  Chaitanya Swamy,et al.  Primal-Dual Algorithms for Connected Facility Location Problems , 2002, APPROX.

[15]  Walid Ben-Ameur,et al.  Routing of Uncertain Traffic Demands , 2005 .

[16]  Arkadi Nemirovski,et al.  Robust Convex Optimization , 1998, Math. Oper. Res..

[17]  Thomas L. Magnanti,et al.  The convex hull of two core capacitated network design problems , 1993, Math. Program..

[18]  Alper Atamtürk,et al.  On splittable and unsplittable flow capacitated network design arc–set polyhedra , 2002, Math. Program..

[19]  A. Koster,et al.  Capacitated network design using general flow-cutset inequalities , 2007 .

[20]  Melvyn Sim,et al.  The Price of Robustness , 2004, Oper. Res..

[21]  Martin W. P. Savelsbergh,et al.  Polyhedral results for the edge capacity polytope , 2002, Math. Program..

[22]  Hande Yaman,et al.  Robust DWDM Routing and Provisioning under Polyhedral Demand Uncertainty ∗ , 2005 .

[23]  Tim Roughgarden,et al.  Simpler and better approximation algorithms for network design , 2003, STOC '03.

[24]  Oktay Günlük,et al.  Minimum cost capacity installation for multicommodity network flows , 1998, Math. Program..

[25]  Pietro Belotti,et al.  OSPF routing with optimal oblivious performance ratio under polyhedral demand uncertainty , 2010 .

[26]  Subhash Suri,et al.  Designing Least-Cost Nonblocking Broadband Networks , 1997, J. Algorithms.

[27]  Oktay Günlük,et al.  Capacitated Network Design - Polyhedral Structure and Computation , 1996, INFORMS J. Comput..

[28]  Alper Atamt On capacitated network design cut { set polyhedraAlper , 2000 .

[29]  Martin Skutella,et al.  A short proof of the VPN Tree Routing Conjecture on ring networks , 2008, Oper. Res. Lett..

[30]  Melvyn Sim,et al.  Robust discrete optimization and network flows , 2003, Math. Program..

[31]  Oktay Günlük,et al.  A branch-and-cut algorithm for capacitated network design problems , 1999, Math. Program..

[32]  M. Labbé,et al.  Solving the hub location problem in a star–star network , 2008 .

[33]  Arie M. C. A. Koster,et al.  On cut‐based inequalities for capacitated network design polyhedra , 2011, Networks.

[34]  Alper Atamtürk,et al.  Network design arc set with variable upper bounds , 2007, Networks.

[35]  Edoardo Amaldi,et al.  Provisioning virtual private networks under traffic uncertainty , 2007, Networks.

[36]  Martine Labbé,et al.  Projecting the flow variables for hub location problems , 2004, Networks.

[37]  Alper Atamtürk,et al.  On capacitated network design cut–set polyhedra , 2002, Math. Program..

[38]  George L. Nemhauser,et al.  Functional description of MINTO : a mixed integer optimizer , 1991 .

[39]  Gérard Cornuéjols,et al.  Valid inequalities for mixed integer linear programs , 2007, Math. Program..

[40]  Arkadi Nemirovski,et al.  Selected topics in robust convex optimization , 2007, Math. Program..

[41]  Chaitanya Swamy,et al.  Primal–Dual Algorithms for Connected Facility Location Problems , 2004, Algorithmica.

[42]  Hande Yaman The Integer Knapsack Cover Polyhedron , 2007, SIAM J. Discret. Math..

[43]  Albert G. Greenberg,et al.  A flexible model for resource management in virtual private networks , 1999, SIGCOMM '99.

[44]  Hande Yaman,et al.  Restricted Robust Uniform Matroid Maximization Under Interval Uncertainty , 2007, Math. Program..

[45]  Alper Atamtürk Strong Formulations of Robust Mixed 0–1 Programming , 2006, Math. Program..

[46]  Martin W. P. Savelsbergh,et al.  MINTO, a mixed INTeger optimizer , 1994, Oper. Res. Lett..

[47]  Prakash Mirchandani Projections of the capacitated network loading problem , 2000, Eur. J. Oper. Res..

[48]  Fernando Ordóñez,et al.  Robust solutions for network design under transportation cost and demand uncertainty , 2008, J. Oper. Res. Soc..

[49]  Arkadi Nemirovski,et al.  Robust solutions of uncertain linear programs , 1999, Oper. Res. Lett..

[50]  Edoardo Amaldi,et al.  Provisioning virtual private networks under traffic uncertainty , 2007 .

[51]  Laurence A. Wolsey,et al.  Valid inequalities and projecting the multicommodity extended formulation for uncapacitated fixed charge network flow problems , 1993 .

[52]  Fernando Ordóñez,et al.  Robust capacity expansion of network flows , 2007, Networks.

[53]  Amit Kumar,et al.  Algorithms for provisioning virtual private networks in the hose model , 2002, TNET.

[54]  Thomas L. Magnanti,et al.  Shortest paths, single origin-destination network design, and associated polyhedra , 1993, Networks.

[55]  K. Onaga,et al.  On feasibility conditions of multicommodity flows in networks , 1971 .