MoS2@N-doped graphene microtubes for fast sodium ion storage

[1]  Yan Yu,et al.  Fast and Reversible Na Intercalation in Nsutite‐Type VO2 Hierarchitectures , 2021, Advanced Materials Interfaces.

[2]  G. Sui,et al.  1D Sb2S3@nitrogen-doped carbon coaxial nanotubes uniformly encapsulated within 3D porous graphene aerogel for fast and stable sodium storage , 2021 .

[3]  Wei Sun,et al.  Designing Rational Interfacial Bonds for Hierarchical Mineral‐Type Trogtalite with Double Carbon towards Ultra‐Fast Sodium‐Ions Storage Properties , 2021, Advanced Functional Materials.

[4]  Tie-hu Li,et al.  N/O/P-rich three-dimensional carbon network for fast sodium storage , 2020 .

[5]  Lili Wang,et al.  Unleashing ultra-fast sodium ion storage mechanisms in interface-engineered monolayer MoS2/C interoverlapped superstructure with robust charge transfer networks , 2020 .

[6]  Teng Zhang,et al.  Transition metal chalcogenide anodes for sodium storage , 2020 .

[7]  S. Yao,et al.  Design and synthesis of electrode materials with both battery-type and capacitive charge storage , 2019, Energy Storage Materials.

[8]  Xiaobo Ji,et al.  Composition Engineering Boosts Voltage Windows for Advanced Sodium Ion Batteries. , 2019, ACS nano.

[9]  Yuchan Zhang,et al.  MoS 2 Nanosheets Anchored on Melamine‐Sponges‐Derived Nitrogen‐Doped Carbon Microtubes as Anode for High‐Rate Sodium‐Ion Batteries , 2019, ChemistrySelect.

[10]  Junjie He,et al.  Nitrogen‐Doped MoS2 Foam for Fast Sodium Ion Storage , 2019, Advanced Materials Interfaces.

[11]  L. Mai,et al.  Defect‐Rich Soft Carbon Porous Nanosheets for Fast and High‐Capacity Sodium‐Ion Storage , 2018, Advanced Energy Materials.

[12]  Zhanwei Xu,et al.  Tulip-like MoS2 with a single sheet tapered structure anchored on N-doped graphene substrates via C–O–Mo bonds for superior sodium storage , 2018 .

[13]  Meilin Liu,et al.  Construction of MoS2/C Hierarchical Tubular Heterostructures for High-Performance Sodium Ion Batteries. , 2018, ACS nano.

[14]  Xiaobo Ji,et al.  Hierarchical Hollow‐Microsphere Metal–Selenide@Carbon Composites with Rational Surface Engineering for Advanced Sodium Storage , 2018, Advanced Energy Materials.

[15]  Wenjun Zhang,et al.  MoS2 nanobelts with (002) plane edges-enriched flat surfaces for high-rate sodium and lithium storage , 2018, Energy Storage Materials.

[16]  Feng Wu,et al.  Hierarchical porous Co0.85Se@reduced graphene oxide ultrathin nanosheets with vacancy-enhanced kinetics as superior anodes for sodium-ion batteries , 2018, Nano Energy.

[17]  Yang Zheng,et al.  Recent progress on sodium ion batteries: potential high-performance anodes , 2018 .

[18]  K. Sun,et al.  Molybdenum disulfide nanosheets embedded in hollow nitrogen-doped carbon spheres for efficient lithium/sodium storage with enhanced electrochemical kinetics , 2018, Electrochimica Acta.

[19]  X. Qu,et al.  Bamboo‐Like Hollow Tubes with MoS2/N‐Doped‐C Interfaces Boost Potassium‐Ion Storage , 2018, Advanced Functional Materials.

[20]  Weibo Hua,et al.  Ultrafast lithium energy storage enabled by interfacial construction of interlayer-expanded MoS2/N-doped carbon nanowires , 2018 .

[21]  Hyunsu Cho,et al.  Built‐In Haze Glass‐Fabric Reinforced Siloxane Hybrid Film for Efficient Organic Light‐Emitting Diodes (OLEDs) , 2018, Advanced Functional Materials.

[22]  Haijiao Zhang,et al.  Growth of MoS2 Nanoflowers with Expanded Interlayer Distance onto N-Doped Graphene for Reversible Lithium Storage , 2018, ChemElectroChem.

[23]  Xiaobo Ji,et al.  Anions induced evolution of Co3X4 (X = O, S, Se) as sodium-ion anodes: The influences of electronic structure, morphology, electrochemical property , 2018, Nano Energy.

[24]  Xiaobo Ji,et al.  Three-Dimensional Hierarchical Framework Assembled by Cobblestone-Like CoSe2@C Nanospheres for Ultrastable Sodium-Ion Storage. , 2018, ACS applied materials & interfaces.

[25]  Z. Wen,et al.  Three-Dimensional Network Architecture with Hybrid Nanocarbon Composites Supporting Few-Layer MoS2 for Lithium and Sodium Storage. , 2018, ACS nano.

[26]  S. Chou,et al.  Nanocomposite Materials for the Sodium-Ion Battery: A Review. , 2018, Small.

[27]  A. Fu,et al.  Spraying Coagulation‐Assisted Hydrothermal Synthesis of MoS2/Carbon/Graphene Composite Microspheres for Lithium‐Ion Battery Applications , 2017 .

[28]  Jang‐Yeon Hwang,et al.  Sodium-ion batteries: present and future. , 2017, Chemical Society reviews.

[29]  Bruce Dunn,et al.  Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x. , 2017, Nature materials.

[30]  Mihui Park,et al.  Cobalt-Doped FeS2 Nanospheres with Complete Solid Solubility as a High-Performance Anode Material for Sodium-Ion Batteries. , 2016, Angewandte Chemie.

[31]  Thomas Wågberg,et al.  Toward a Low‐Cost Artificial Leaf: Driving Carbon‐Based and Bifunctional Catalyst Electrodes with Solution‐Processed Perovskite Photovoltaics , 2016 .

[32]  Jesse S. Ko,et al.  Mesoporous MoS2 as a Transition Metal Dichalcogenide Exhibiting Pseudocapacitive Li and Na‐Ion Charge Storage , 2016 .

[33]  Yanfang Sun,et al.  MoS2-graphene hybrid nanosheets constructed 3D architectures with improved electrochemical performance for lithium-ion batteries and hydrogen evolution , 2016 .

[34]  Xianjie Liu,et al.  Regular Energetics at Conjugated Electrolyte/Electrode Modifier for Organic Electronics and their Implications on Design Rules , 2015 .

[35]  A. Mohite,et al.  Phase engineering of transition metal dichalcogenides. , 2015, Chemical Society reviews.

[36]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.