Modelling of Magnetic Resonance Spectra Using Mixtures for Binned and Truncated Data
暂无分享,去创建一个
Sabine Van Huffel | Alfons Juan-Císcar | Juan Miguel García-Gómez | Montserrat Robles | S. Huffel | M. Robles | Alfons Juan-Císcar | J. M. García-Gómez
[1] A. W. Simonetti,et al. Development of a decision support system for diagnosis and grading of brain tumours using in vivo magnetic resonance single voxel spectra , 2006, NMR in biomedicine.
[2] Allou Samé,et al. A classification EM algorithm for binned data , 2006, Comput. Stat. Data Anal..
[3] Daniel S. Hirschberg,et al. Small Sample Statistics for Classification Error Rates I: Error Rate Measurements , 1996 .
[4] S Mierisová,et al. MR spectroscopy quantitation: a review of frequency domain methods , 2001, NMR in biomedicine.
[5] G. McLachlan,et al. Fitting mixture models to grouped and truncated data via the EM algorithm. , 1988, Biometrics.
[6] S. Huffel,et al. MR spectroscopy quantitation: a review of time‐domain methods , 2001, NMR in biomedicine.
[7] M. Julià-Sapé,et al. A Multi-Centre, Web-Accessible and Quality Control-Checked Database of in vivo MR Spectra of Brain Tumour Patients , 2006, Magnetic Resonance Materials in Physics, Biology and Medicine.
[8] G. McLachlan,et al. Algorithm AS 254: maximum likelihood estimation from grouped and truncated data with finite normal mixture models , 1990 .
[9] Geoffrey J. McLachlan,et al. Maximum Likelihood Estimation of Mixture Densities for Binned and Truncated Multivariate Data , 2002, Machine Learning.