Fatigue, an everlasting materials problem - still en vogue

Abstract In the first part, some fundamental issues that have been under discussion for a long time will be revisited, namely the effect of the cyclic slip mode on the fatigue-induced dislocation distributions, the origin and effect of cyclic slip irreversibilities and their relation to fatigue life and, finally, cyclic strain localization and fatigue crack initiation in persistent slip bands. In the second part, some topics that have recently found increasing interest will be discussed such as the cyclic deformation and fatigue behaviour of ultrafine-grained and nanostructured materials and the microstructural mechanisms that govern fatigue life of ductile and high-strength materials in the range of ultrahigh cycle fatigue. Some general conclusions will be drawn.

[1]  P. Sanders,et al.  Fatigue of nanocrystalline copper , 1995 .

[2]  D. Hull,et al.  Extrusion and intrusion by cyclic slip in copper , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[3]  N. Thompson,et al.  Xi. The origin of fatigue fracture in copper , 1956 .

[4]  Laurent Guillaumat,et al.  Influence of the drilling quality on the fatigue compression behaviour of carbon epoxy laminates , 2006 .

[5]  H. Mughrabi,et al.  Specific features and mechanisms of fatigue in the ultrahigh-cycle regime , 2006 .

[6]  H. Höppel,et al.  Bimodal grain size distributions in UFG materials produced by SPD: Their evolution and effect on mechanical properties , 2010 .

[7]  J. Weertman,et al.  Overview of fatigue performance of Cu processed by severe plastic deformation , 1999 .

[8]  D. L. Holt,et al.  The Dislocation Cell IZE AND Dislocation Density in Copper Deformed at Temperatures between 25 and 700 Degrees C. , 1972 .

[9]  Nishijima,et al.  Stepwise S-N curve and fish-eye failure in gigacycle fatigue , 1999 .

[10]  R. Valiev,et al.  Cyclic deformation behavior and fatigue lives of ultrafine-grained Ti-6AL-4V ELI alloy for medical use , 2009 .

[11]  Stanzl‐Tschegg Fracture mechanisms and fracture mechanics at ultrasonic frequencies , 1999 .

[12]  Z. S. Basinski,et al.  Fundamental aspects of low amplitude cyclic deformation in face-centred cubic crystals , 1992 .

[13]  H. Mughrabi,et al.  Influence of temperature and carbon content on the cyclic deformation and fatigue behaviour of α-iron. Part I. Cyclic deformation and stress–behaviour , 1998 .

[14]  H. Karnthaler,et al.  Dislocation Structures in Plastically Deformed, Disordered Ni3Fe , 1979 .

[15]  Petr Lukáš,et al.  High cycle fatigue life of metals , 1974 .

[16]  R. Kawalla,et al.  Static and Cyclic Crack Growth Behavior of Ultrafine-Grained Al Produced by Different Severe Plastic Deformation Methods , 2007 .

[17]  Paul C. Paris,et al.  Fatigue crack growth from small to long cracks in VHCF with surface initiations , 2007 .

[18]  V. Stolyarov,et al.  Cyclic behavior of ultrafine-grain titanium produced by severe plastic deformation , 2001 .

[19]  C. Holste,et al.  Influence of size effect on microstructural changes in cyclically deformed polycrystalline nickel , 2002 .

[20]  W. A. Backofen,et al.  The effect of grain size on fatigue , 1971 .

[21]  Fenghua Zhou,et al.  High tensile ductility in a nanostructured metal , 2002, Nature.

[22]  P. Lukas,et al.  Role of persistent slip bands in fatigue , 2004 .

[23]  N. Mott A theory of the origin of fatigue cracks , 1958 .

[24]  J. Martin,et al.  3 – Metals and alloys , 2006 .

[25]  C. Laird,et al.  Cyclic stress-strain response of F.C.C. metals and alloys—I Phenomenological experiments , 1967 .

[26]  RW Landgraf,et al.  The Resistance of Metals to Cyclic Deformation , 1970 .

[27]  H. Biermann,et al.  Fracture behaviour of ultrafine-grained materials under static and cyclic loading , 2006 .

[28]  L. Kunz,et al.  Fatigue notch sensitivity of ultrafine-grained copper , 2005 .

[29]  R. Valiev,et al.  Microstructural study of the parameters governing coarsening and cyclic softening in fatigued ultrafine-grained copper , 2002 .

[30]  U. Gösele,et al.  A model of extrusions and intrusions in fatigued metals I. Point-defect production and the growth of extrusions , 1981 .

[31]  S. Stanzl-Tschegg,et al.  17 th European Conference on Fracture 2-5 September , 2008 , Brno , Czech Republic Fatigue damage in copper polycrystals subjected to ultrahigh-cycle fatigue below the PSB threshold , 2008 .

[32]  R. Valiev,et al.  Paradox of Strength and Ductility in Metals Processed Bysevere Plastic Deformation , 2002 .

[33]  C. Sonsino Course of SN-curves especially in the high-cycle fatigue regime with regard to component design and safety , 2007 .

[34]  H. Mughrabi Cyclic Slip Irreversibilities and the Evolution of Fatigue Damage , 2009 .

[35]  J. Polák On the role of point defects in fatigue crack initiation , 1987 .

[36]  A. Shan,et al.  Direct observation of shear deformation during equal channel angular pressing of pure aluminum , 1999 .

[37]  J. Weertman,et al.  Cyclic softening of ultrafine grain copper , 1998 .

[38]  H. Mughrabi,et al.  On ‘multi-stage’ fatigue life diagrams and the relevant life-controlling mechanisms in ultrahigh-cycle fatigue , 2002 .

[39]  H. Mughrabi,et al.  Fatigue Crack Initiation by Cyclic Slip Irreversibilities in High-Cycle Fatigue , 1983 .

[40]  S. Stanzl-Tschegg,et al.  Life time and cyclic slip of copper in the VHCF regime , 2007 .

[41]  P. Forsyth Slip-band damage and extrusion , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[42]  L. M. Brown DISLOCATIONS AND THE FATIGUE STRENGTH OF METALS , 1981 .

[43]  M. Klesnil,et al.  Dislocation structures in fatigued single crystals of CuZn system , 1971 .

[44]  H. Maier,et al.  On the fatigue behavior of ultrafine-grained interstitial-free steel , 2006 .

[45]  P. Neumann,et al.  Quantitative measurement of persistent slip band profiles and crack initiation , 1986 .

[46]  K. Obrtlík,et al.  Extrusions and intrusions in fatigued metals. Part 1. State of the art and history , 2009 .

[47]  R. Valiev,et al.  On the Cyclic Response of Ultrafine-Grained Copper , 1998 .

[48]  Y. Furuya,et al.  Improvement of gigacycle fatigue properties by modified ausforming in 1600 and 2000 MPA-class low-alloy steels , 2002 .

[49]  C. Schwink,et al.  Transmission electron microscopy study of the stacking-fault energy and dislocation structure in CuMn alloys , 1987 .

[50]  Robert J. Asaro,et al.  Toward a quantitative understanding of mechanical behavior of nanocrystalline metals , 2007 .

[51]  Y. Furuya,et al.  Effects of carbon and phosphorus addition on the fatigue properties of ultrafine-grained steels , 2005 .

[52]  V. Stolyarov,et al.  Cyclic response of ultrafine-grained copper at constant plastic strain amplitude , 1997 .

[53]  K. Obrtlík,et al.  Atomic force microscopy of surface relief in individual grains of fatigued 316L austenitic stainless steel , 2002 .

[54]  H. Karnthaler,et al.  On the origin of planar slip in f.c.c. alloys , 1989 .

[55]  K. Obrtlík,et al.  AFM evidence of surface relief formation and models of fatigue crack nucleation , 2003 .

[56]  Mughrabi On the life‐controlling microstructural fatigue mechanisms in ductile metals and alloys in the gigacycle regime , 1999 .

[57]  Jaroslav Polák,et al.  Cyclic Deformation, Crack Initiation, and Low-Cycle Fatigue , 2003 .

[58]  Bathias There is no infinite fatigue life in metallic materials , 1999 .

[59]  L. Kunz,et al.  Fatigue strength, microstructural stability and strain localization in ultrafine-grained copper , 2006 .

[60]  G. Li,et al.  Scanning electron microscopy-electron channelling contrast investigation of recrystallization during cyclic deformation of ultrafine grained copper processed by equal channel angular pressing , 2002 .

[61]  N. Nabiran,et al.  Fatigue and Structural Changes of High Interstitial Stainless Austenitic Steels , 2010 .

[62]  R. Valiev,et al.  Principles of equal-channel angular pressing as a processing tool for grain refinement , 2006 .

[63]  L. Kunz,et al.  Fatigue behavior and damage characteristic of ultra-fine grain low-purity copper processed by equal-channel angular pressing (ECAP) , 2008 .

[64]  H. Maier,et al.  Cyclic stress–strain response of ultrafine grained copper , 2006 .

[65]  H. Höppel,et al.  Fatigue Properties of Bulk Nanostructured Materials , 2009 .

[66]  Yukitaka Murakami,et al.  On the mechanism of fatigue failure in the superlong life regime (N>107 cycles). Part 1: influence of hydrogen trapped by inclusions , 2000 .

[67]  H. Maier,et al.  On the Microstructural Stability of Ultrafine-Grained Interstitial-Free Steel under Cyclic Loading , 2007 .

[68]  P. Kao,et al.  Cyclic deformation of ultrafine-grained aluminum , 2007 .

[69]  Y. Estrin,et al.  Fatigue behaviour of light alloys with ultrafine grain structure produced by severe plastic deformation: An overview , 2010 .

[70]  R. Valiev,et al.  Bulk nanostructured materials from severe plastic deformation , 2000 .

[71]  W. Wood Formation of fatigue cracks , 1958 .

[72]  Heinz Werner Höppel,et al.  Cyclic deformation and fatigue properties of very fine-grained metals and alloys , 2010 .

[73]  Claude Bathias,et al.  How and why the fatigue S–N curve does not approach a horizontal asymptote , 2001 .

[74]  S. Suresh,et al.  Fatigue behavior of nanocrystalline metals and alloys , 2005 .

[75]  James Alfred Ewing,et al.  The fracture of metals under repeated alternations of stress , 1903, Proceedings of the Royal Society of London.

[76]  H. Höppel,et al.  Cyclic Deformation and Fatigue Properties of Ultrafine Grain Size Materials: Current Status and Some Criteria for Improvement of the Fatigue Resistance , 2000 .

[77]  R. Valiev,et al.  Annealing treatments to enhance thermal and mechanical stability of ultrafine-grained metals produced by severe plastic deformation , 2003, International Journal of Materials Research.

[78]  R. Valiev,et al.  An overview: Fatigue behaviour of ultrafine-grained metals and alloys , 2006 .

[79]  K. Differt,et al.  A model of extrusions and intrusions in fatigued metals. II: Surface roughening by random irreversible slip , 1986 .