Numerical Study of Gamma-Ray Burst Jet Formation in Collapsars

Two-dimensional MHD simulations are performed using the ZEUS-2D code to investigate the dynamics of a collapsar that generates a GRB jet, taking account of realistic equation of state, neutrino cooling and heating processes, magnetic fields, and gravitational force from the central black hole and self-gravity. It is found that neutrino heating processes are not efficient enough to launch a jet in this study. It is also found that a jet is launched mainly by B fields that are amplified by the winding-up effect. However, since the ratio of total energy relative to the rest-mass energy in the jet is not as high as several hundred, we conclude that the jets seen in this study are not GRB jets. This result suggests that general relativistic effects will be important to generating a GRB jet. Also, the accretion disk with magnetic fields may still play an important role in launching a GRB jet, although a simulation for much longer physical time (~10-100 s) is required to confirm this effect. It is shown that a considerable amount of 56Ni is synthesized in the accretion disk. Thus, there will be a possibility for the accretion disk to supply the sufficient amount of 56Ni required to explain the luminosity of a hypernova. Also, it is shown that neutron-rich matter due to electron captures with high entropy per baryon is ejected along the polar axis. Thus, there will be a possibility that r-process nucleosynthesis occurs at such a region. Finally, many neutrons will be ejected from the jet, which suggests that signals from the neutron decays may be observed as the delayed bump of the light curve of the afterglow or gamma rays.

[1]  D. Reichart GRB 970228 Revisited: Evidence for a Supernova in the Light Curve and Late Spectral Energy Distribution of the Afterglow , 1999, astro-ph/9906079.

[2]  Explosive Nucleosynthesis in Axisymmetrically Deformed Type II Supernovae , 1997, astro-ph/9709149.

[3]  Effects of Jetlike Explosion in SN 1987A , 1999, astro-ph/9907109.

[4]  Black Hole Shadows of Charged Spinning Black Holes , 2005, astro-ph/0505316.

[5]  M. Shibata,et al.  Axisymmetric collapse simulations of rotating massive stellar cores in full general relativity: Numerical study for prompt black hole formation , 2005, astro-ph/0504567.

[6]  Aimee L. Hungerford,et al.  Explosive Nucleosynthesis from Gamma-Ray Burst and Hypernova Progenitors: Direct Collapse versus Fallback , 2006, astro-ph/0604471.

[7]  Masaru Shibata,et al.  Three-dimensional simulations of stellar core collapse in full general relativity: Nonaxisymmetric dynamical instabilities , 2005 .

[8]  Explosive Nucleosynthesis in Aspherical Hypernova Explosions and Late-Time Spectra of SN 1998bw , 2000 .

[9]  Y. Tatematsu,et al.  Magnetohydrodynamic flows in Kerr geometry : energy extraction from black holes , 1990 .

[10]  R. Blandford,et al.  Electromagnetic extraction of energy from Kerr black holes , 1977 .

[11]  Chris L. Fryer,et al.  Hyperaccreting Black Holes and Gamma-Ray Bursts , 1998, astro-ph/9807028.

[12]  K. Kotake,et al.  Anisotropic Neutrino Radiation in Rotational Core Collapse , 2003 .

[13]  S. R. Kulkarni,et al.  The Observed Offset Distribution of Gamma-Ray Bursts from Their Host Galaxies: A Robust Clue to the Nature of the Progenitors , 2000, astro-ph/0010176.

[14]  E. Rol,et al.  Evidence for a Supernova in Reanalyzed Optical and Near-Infrared Images of GRB 970228 , 1999, astro-ph/9907264.

[15]  H. Takabe,et al.  Nonaxisymmetric Magnetorotational Instability in Proto-Neutron Stars , 2005, astro-ph/0512311.

[16]  D. Proga On Magnetohydrodynamic Jet Production in the Collapsing and Rotating Envelope , 2005, astro-ph/0502509.

[17]  John F. Hawley,et al.  A Powerful Local Shear Instability in Weakly Magnetized Disks. II. Nonlinear Evolution , 1991 .

[18]  M. Norman,et al.  ZEUS-2D: A radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. I - The hydrodynamic algorithms and tests. II - The magnetohydrodynamic algorithms and tests , 1992 .

[19]  Weiqun Zhang,et al.  RAM: A Relativistic Adaptive Mesh Refinement Hydrodynamics Code , 2005, astro-ph/0505481.

[20]  W. Benz,et al.  Postcollapse hydrodynamics of SN 1987A : two-dimensional simulations of the early evolution , 1992 .

[21]  ANGULAR MOMENTUM TRANSPORT BY MAGNETOHYDRODYNAMIC TURBULENCE IN ACCRETION DISKS: GAS PRESSURE DEPENDENCE OF THE SATURATION LEVEL OF THE MAGNETOROTATIONAL INSTABILITY , 2003, astro-ph/0312480.

[22]  S. Djorgovski,et al.  The unusual afterglow of the γ-ray burst of 26 March 1998 as evidence for a supernova connection , 1999, Nature.

[23]  N. Ueno Japan Society for the Promotion of Science , 2018, Impact.

[24]  Accretion Modes in Collapsars: Prospects for Gamma-Ray Burst Production , 2005, astro-ph/0509307.

[25]  S. Woosley,et al.  Gamma-Ray Bursts and Type Ic Supernova SN 1998bw , 1998, astro-ph/9806299.

[26]  K. Kotake,et al.  r-Process Nucleosynthesis in Magnetohydrodynamic Jet Explosions of Core-Collapse Supernovae , 2005, astro-ph/0504100.

[27]  N. Langer,et al.  Presupernova Evolution of Rotating Massive Stars. I. Numerical Method and Evolution of the Internal Stellar Structure , 1999, astro-ph/9904132.

[28]  General relativistic magnetohydrodynamic simulations of the jet formation and large-scale propagation from black hole accretion systems , 2006, astro-ph/0603045.

[29]  A. Dar,et al.  Neutrino annihilation in type II supernovae , 1987 .

[30]  S. Woosley Gamma-ray bursts from stellar mass accretion disks around black holes , 1993 .

[31]  H. A. Bethe,et al.  Supernova mechanisms. [SN 1987a] , 1990 .

[32]  J. A. Shercliff,et al.  A Textbook of Magnetohydrodynamics , 1965 .

[33]  R. Perna,et al.  Neutrino Trapping and Accretion Models for Gamma-Ray Bursts , 2002, astro-ph/0207319.

[34]  General Relativistic Magnetohydrodynamic Simulations of Collapsars , 2004, astro-ph/0404152.

[35]  Alexander Heger,et al.  The Progenitor Stars of Gamma-Ray Bursts , 2005, astro-ph/0508175.

[36]  Katsuhiko Sato Supernova Explosion and Neutral Currents of Weak Interaction , 1975 .

[37]  S. Rosswog,et al.  High‐resolution calculations of merging neutron stars – II. Neutrino emission , 2003 .

[38]  K. Kotake,et al.  Magneto-driven Shock Waves in Core-Collapse Supernovae , 2004, astro-ph/0408388.

[39]  V. Gregory Weirs,et al.  Adaptive Mesh Refinement - Theory and Applications , 2008 .

[40]  I. Igumenshchev,et al.  Two-dimensional Models of Hydrodynamical Accretion Flows into Black Holes , 2000, astro-ph/0003397.

[41]  M. Rees,et al.  Neutron-loaded outflows in gamma-ray bursts , 2005, astro-ph/0512495.

[42]  S. Ando,et al.  Gamma-ray burst neutrino background and star formation history in the universe , 2002, astro-ph/0203481.

[43]  S. Koide Magnetic extraction of black hole rotational energy: Method and results of general relativistic magnetohydrodynamic simulations in Kerr space-time , 2003 .

[44]  J. R. Thorstensen,et al.  GRB 060218/SN 2006aj: A Gamma-Ray Burst and Prompt Supernova at z = 0.0335 , 2006, astro-ph/0603686.

[45]  The rp-Process in Neutrino-driven Winds , 2006, astro-ph/0602488.

[46]  W. Benz,et al.  Inside the Supernova: A Powerful Convective Engine , 1994, astro-ph/9404024.

[47]  D. Bersier,et al.  Discovery of the Low-Redshift Optical Afterglow of GRB 011121 and Its Progenitor Supernova SN 2001ke* , 2003 .

[48]  James M. Stone,et al.  Magnetohydrodynamical non‐radiative accretion flows in two dimensions , 2001 .

[49]  R. Cai,et al.  Super-acceleration on the brane through energy flow from the bulk , 2005, hep-th/0511301.

[50]  Katsuhiko Sato,et al.  Explosive Nucleosynthesis in GRB Jets Accompanied by Hypernovae , 2006, astro-ph/0601111.

[51]  J. Krolik,et al.  Magnetically Driven Jets in the Kerr Metric , 2005, astro-ph/0512227.

[52]  K. Pedersen,et al.  A very energetic supernova associated with the γ-ray burst of 29 March 2003 , 2003, Nature.

[53]  G. Meynet,et al.  Stellar evolution with rotation. VII. - Low metallicity models and the blue to red supergiant ratio in the SMC , 2001, astro-ph/0105051.

[54]  Warren R. Brown,et al.  Spectroscopic Discovery of the Supernova 2003dh Associated with GRB 030329 , 2003, astro-ph/0304173.

[55]  GENERAL RELATIVISTIC MAGNETOHYDRODYNAMIC SIMULATIONS OF COLLAPSARS: ROTATING BLACK HOLE CASES , 2003, astro-ph/0310017.

[56]  K. Asano,et al.  Neutrino Pair Annihilation in the Gravitation of Gamma-Ray Burst Sources , 2000, astro-ph/0002196.

[57]  N. Itoh,et al.  Neutrino energy loss in stellar interiors. III. Pair, photo-, plasma, and bremsstrahlung processes , 1989 .

[58]  S. Woosley,et al.  Nucleosynthesis in Gamma-Ray Burst Accretion Disks , 2002, astro-ph/0209412.

[59]  Rohta Takahashi,et al.  Shapes and Positions of Black Hole Shadows in Accretion Disks and Spin Parameters of Black Holes , 2004, astro-ph/0405099.

[60]  J. Hawley,et al.  A powerful local shear instability in weakly magnetized disks. I - Linear analysis. II - Nonlinear evolution , 1990 .

[61]  H. Lee,et al.  The Blandford-Znajek process as a central engine for a gamma-ray burst , 1999, astro-ph/9906213.

[62]  S. S. Komissarov Observations of the Blandford–Znajek process and the magnetohydrodynamic Penrose process in computer simulations of black hole magnetospheres , 2005 .

[63]  R. Blandford,et al.  Hydromagnetic flows from accretion discs and the production of radio jets , 1982 .

[64]  Explosive Nucleosynthesis Associated with Formation of Jet-induced Gamma-Ray Bursts in Massive Stars , 2003, astro-ph/0306417.

[65]  Nozomu Tominaga,et al.  A neutron-star-driven X-ray flash associated with supernova SN 2006aj , 2006, Nature.

[66]  The r-Process in the Neutrino Winds of Core-Collapse Supernovae and U-Th Cosmochronology , 2002, astro-ph/0206133.

[67]  M. Rampp,et al.  Two-dimensional hydrodynamic core-collapse supernova simulations with spectral neutrino transport - I. Numerical method and results for a 15 solar mass star , 2005, astro-ph/0507135.

[68]  Los Alamos National Laboratory,et al.  Off-Axis Neutrino Scattering in Gamma-Ray Burst Central Engines , 2002, astro-ph/0205213.

[69]  A. S. Fruchter,et al.  The star-formation rate in the host of GRB 990712 , 2001, astro-ph/0110547.

[70]  S. Woosley,et al.  Nucleosynthesis and chemical evolution : sixteenth advanced course of the Swiss Society of Astronomy and Astrophysics , 1986 .

[71]  A. MacFadyen,et al.  Collapsars: Gamma-Ray Bursts and Explosions in “Failed Supernovae” , 1998, astro-ph/9810274.

[72]  Boulder,et al.  Accretion of Low Angular Momentum Material onto Black Holes: Two-dimensional Hydrodynamical Inviscid Case , 2002, astro-ph/0208517.

[73]  M. Norman,et al.  ZEUS-2D : a radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. II : The magnetohydrodynamic algorithms and tests , 1992 .

[74]  Supernova fallback: A possible site for the r-process , 2006, astro-ph/0606450.

[75]  S. Djorgovski,et al.  The bright optical afterglow of the nearby γ-ray burst of 29 March 2003 , 2003, Nature.

[76]  S. Blinnikov,et al.  Equation of State of a Fermi Gas: Approximations for Various Degrees of Relativism and Degeneracy , 1996 .

[77]  J. Hawley,et al.  Instability, turbulence, and enhanced transport in accretion disks , 1997 .

[78]  Tong Liu,et al.  Neutrino-dominated Accretion Models for Gamma-Ray Bursts: Effects of General Relativity and Neutrino Opacity , 2006, astro-ph/0604370.

[79]  J. Kneller,et al.  Neutrino scattering, absorption and annihilation above the accretion discs of gamma ray bursts , 2004, astro-ph/0410397.

[80]  Charles F. Gammie,et al.  Local Three-dimensional Magnetohydrodynamic Simulations of Accretion Disks , 1995 .

[81]  P. Vreeswijk,et al.  A hypernova model for the supernova associated with the γ-ray burst of 25 April 1998 , 1998, Nature.

[82]  S. Nagataki,et al.  Alfvén Wave-driven Proto-Neutron Star Winds and r-Process Nucleosynthesis , 2004, astro-ph/0412362.

[83]  Magnetohydrodynamic simulations of a rotating massive star collapsing to a black hole , 2006, astro-ph/0602457.

[84]  E. Baron,et al.  Neutrino Flows in Collapsing Stars: A Two-Fluid Model , 1986 .

[85]  T. Piran,et al.  Accretion Models of Gamma-Ray Bursts , 2001, astro-ph/0103360.

[86]  J. P. Laboratory,et al.  The Magnetorotational Instability in Core-Collapse Supernova Explosions , 2002, astro-ph/0208128.

[87]  R. Wijers,et al.  Issues Regarding the Blandford-Znajek Process as a Gamma-Ray Burst Inner Engine , 1999, astro-ph/9911401.

[88]  Masa-Aki Hashimoto,et al.  Core-Collapse Supernovae and Their Ejecta , 1995 .