Gravity waves and non-Gaussian features from particle production in a sector gravitationally coupled to the inflaton

We study the possibility that particle production during inflation could source observable gravity waves on scales relevant for Cosmic Microwave Background experiments. A crucial constraint on such scenarios arises because particle production can also source inflaton perturbations, and might ruin the usual predictions for a nearly scale invariant spectrum of nearly Gaussian curvature fluctuations. To minimize this effect, we consider two models of particle production in a sector that is only gravitationally coupled to the inflaton. For a single instantaneous burst of massive particle production, we find that localized features in the scalar spectrum and bispectrum might be observable, but gravitational wave signatures are unlikely to be detectable (due to the suppressed quadrupole moment of non-relativistic quanta) without invoking some additional effects. We also consider a model with a rolling pseudoscalar that leads to a continuous production of relativistic gauge field fluctuations during inflation. Here we find that gravitational waves from particle production can actually exceed the usual inflationary vacuum fluctuations in a regime where non-Gaussianity is consistent with observational limits. In this model observable B-mode polarization can be obtained for any choice of inflaton potential, and the amplitude of the signal is not necessarily correlated with the scale of inflation.

[1]  Gravitational waves from stochastic relativistic sources : primordial turbulence and magnetic fields , 2006, astro-ph/0603476.

[2]  J. García-Bellido,et al.  Gravitational waves from Abelian gauge fields and cosmic strings at preheating , 2010, 1006.0217.

[3]  Warm inflation. , 1995, Physical review letters.

[4]  L. Sorbo Parity violation in the Cosmic Microwave Background from a pseudoscalar inflaton , 2011, 1101.1525.

[5]  J. García-Bellido,et al.  Stochastic background of gravitational waves from hybrid preheating. , 2006, Physical review letters.

[6]  V. Mandic,et al.  Gravitational-wave stochastic background from kinks and cusps on cosmic strings , 2010, 1004.0890.

[7]  Carlo Ungarelli,et al.  The primordial density perturbation in the curvaton scenario , 2022 .

[8]  S. Matarrese,et al.  Anisotropic trispectrum of curvature perturbations induced by primordial non-Abelian vector fields , 2009, 0909.5621.

[9]  Coupled fields in external background with application to nonthermal production of gravitinos , 2001, hep-th/0103202.

[10]  Edwax 'd % 'itten Cosmic separation of phases , 2011 .

[11]  J. Silk,et al.  Large Scale Structure Forecast Constraints on Particle Production During Inflation , 2010, 1009.5858.

[12]  L. Kofman,et al.  Reheating the universe after multi-field inflation , 2010, 1005.2196.

[13]  J. Bond,et al.  Preheating after modular inflation , 2009, 0909.0503.

[14]  C. Grojean,et al.  Gravitational Waves from Phase Transitions at the Electroweak Scale and Beyond , 2006, hep-ph/0607107.

[15]  W. Marsden I and J , 2012 .

[16]  Mindaugas Karčiauskas,et al.  Vector curvaton without instabilities , 2009, 0909.0475.

[17]  Watkins,et al.  Gravitational waves from first-order cosmological phase transitions. , 1992, Physical review letters.

[18]  L. Kofman,et al.  Gravity waves from tachyonic preheating after hybrid inflation , 2008, 0812.2917.

[19]  Marco Peloso,et al.  Large non-gaussianity in axion inflation. , 2010, Physical review letters.

[20]  Matias Zaldarriaga,et al.  CMBPol Mission Concept Study Probing Ination with CMB Polarization , 2008, 0811.3919.

[21]  Non-Gaussianity from tachyonic preheating in hybrid inflation , 2006, astro-ph/0611750.

[22]  R. Durrer,et al.  Gravitational wave generation from bubble collisions in first-order phase transitions: An analytic approach , 2007, 0711.2593.

[23]  E. Pajer,et al.  Observational Constraints on Gauge Field Production in Axion Inflation , 2012, 1203.6076.

[24]  Can a vector field be responsible for the curvature perturbation in the Universe , 2006, hep-ph/0607229.

[25]  A. Mégevand Gravitational waves from deflagration bubbles in first-order phase transitions , 2008, 0804.0391.

[26]  L. Senatore,et al.  Trapped Inflation , 2009, 0902.1006.

[27]  L. Sorbo,et al.  Non-Gaussianities and chiral gravitational waves in natural steep inflation , 2012, 1203.5849.

[28]  Non-Gaussian and nonscale-invariant perturbations from tachyonic preheating in hybrid inflation , 2006, astro-ph/0601481.

[29]  Gravitational Radiation From Cosmological Turbulence , 2001, astro-ph/0111483.

[30]  L. Krauss,et al.  Nearly scale invariant spectrum of gravitational radiation from global phase transitions. , 2007, Physical review letters.

[31]  D. Lyth,et al.  Statistical anisotropy of the curvature perturbation from vector field perturbations. , 2008, 0809.1055.

[32]  M. Peloso,et al.  Phenomenology of a pseudo-scalar inflaton: naturally large nongaussianity , 2011, 1102.4333.

[33]  R. Durrer,et al.  The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition , 2009, 0909.0622.

[34]  N. Barnaby On Features and Nongaussianity from Inflationary Particle Production , 2010, 1006.4615.

[35]  M. Sasaki,et al.  Effects of particle production during inflation , 2008, 0809.5142.

[36]  L. Sorbo,et al.  Particle production during inflation and gravitational waves detectable by ground-based interferometers , 2011, 1109.0022.

[37]  Zhiqi Huang,et al.  Particle Production During Inflation: Observational Constraints and Signatures , 2009, 0909.0751.

[38]  L. Sorbo,et al.  Naturally inflating on steep potentials through electromagnetic dissipation , 2009, 0908.4089.

[39]  J. Grieb,et al.  Anatomy of bispectra in general single-field inflation -- modal expansions , 2011, 1110.1369.

[40]  J. Chluba,et al.  PROBING THE INFLATON: SMALL-SCALE POWER SPECTRUM CONSTRAINTS FROM MEASUREMENTS OF THE COSMIC MICROWAVE BACKGROUND ENERGY SPECTRUM , 2012, 1203.2681.

[41]  D. Lyth,et al.  Anisotropic non-Gaussianity from vector field perturbations , 2008, 0812.0264.

[42]  L. Krauss,et al.  Probing the gravitational wave signature from cosmic phase transitions at different scales , 2010, 1003.1735.

[43]  Ryo Namba,et al.  Observable non-gaussianity from gauge field production in slow roll inflation, and a challenging connection with magnetogenesis , 2012, 1202.1469.

[44]  C. Netterfield,et al.  Primordial Gravitational Wave Detectability with Deep Small-Sky CMB Experiments , 2011, 1108.2043.

[45]  Andrei Linde,et al.  Towards the theory of reheating after inflation , 1997 .

[46]  L. Krauss Gravitational waves from global phase transitions , 1992 .

[47]  S. Matarrese,et al.  Maximal amount of gravitational waves in the curvaton scenario , 2007, 0705.4240.

[48]  M. Peloso,et al.  Gauge Field Production in Axion Inflation: Consequences for Monodromy, non-Gaussianity in the CMB, and Gravitational Waves at Interferometers , 2011, 1110.3327.

[49]  Mindaugas Karčiauskas The primordial curvature perturbation from vector fields of general non-Abelian groups , 2011, 1104.3629.

[50]  S. Saito,et al.  Probing polarization states of primordial gravitational waves with cosmic microwave background anisotropies , 2007, 0705.3701.

[51]  D. Chialva,et al.  Gravitational waves from first order phase transitions during inflation , 2010, 1004.2051.

[52]  S. Huber,et al.  Gravitational wave production by collisions: more bubbles , 2008, 0806.1828.

[53]  Vera Gluscevic,et al.  Testing Parity-Violating Mechanisms with Cosmic Microwave Background Experiments , 2010, 1002.1308.

[54]  Edward J. Wollack,et al.  Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing, Sky Maps, & Basic Results , 2008, 0803.0732.

[55]  I. Zavala,et al.  Statistical anisotropy from vector curvaton in D-brane inflation , 2011, 1108.4424.

[56]  N. Barnaby Non-Gaussianity from Particle Production during Inflation , 2010, 1010.5507.

[57]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[58]  M. Peloso,et al.  Production of Massive Fermions at Preheating and Leptogenesis , 1999, hep-ph/9905242.

[59]  Relic backgrounds of gravitational waves from cosmic turbulence , 2002, astro-ph/0206461.

[60]  J. Yokoyama,et al.  Gravitational wave background and non-Gaussianity as a probe of the curvaton scenario , 2009, 0910.0715.

[61]  Probing Planckian physics : resonant production of particles during inflation and features in the primordial power spectrum , 1999, hep-ph/9910437.

[62]  L. Sorbo,et al.  Erratum: Particle production during inflation and gravitational waves detectable by ground-based interferometers [Phys. Rev. D 85, 023534 (2012)PRVDAQ1550-7998] , 2012 .

[63]  D. Wands,et al.  Non-Gaussianity and Gravitational Waves from Quadratic and Self-interacting Curvaton , 2011, 1101.1254.

[64]  J. García-Bellido,et al.  Gravitational waves from self-ordering scalar fields , 2009, 0908.0425.

[65]  J. García-Bellido,et al.  Gravitational wave background from reheating after hybrid inflation , 2007, 0707.0839.

[66]  Mindaugas Karčiauskas,et al.  Vector curvaton with varying kinetic function , 2009, 0907.1838.

[67]  Gary N. Felder,et al.  Theory and numerics of gravitational waves from preheating after inflation , 2007, 0707.0875.

[68]  David H. Lyth,et al.  What Would We Learn by Detecting a Gravitational Wave Signal in the Cosmic Microwave Background Anisotropy , 1997 .

[69]  P. Steinhardt Relativistic Detonation Waves and Bubble Growth in False Vacuum Decay , 1982 .

[70]  A. Vilenkin,et al.  Gravitational radiation from monopoles connected by strings , 1996, gr-qc/9612008.

[71]  T. Damour,et al.  Cosmic Strings and the String Dilaton , 1996, gr-qc/9610005.

[72]  M. Zaldarriaga,et al.  New sources of gravitational waves during inflation , 2011, 1109.0542.

[73]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[74]  Watkins,et al.  Gravitational radiation from colliding vacuum bubbles. , 1992, Physical review. D, Particles and fields.

[75]  D. Pogosyan,et al.  Cosmological fluctuations from infrared cascading during inflation , 2009, 0902.0615.

[76]  Turner,et al.  Gravitational radiation from first-order phase transitions. , 1994, Physical review. D, Particles and fields.

[77]  K. Dimopoulos,et al.  Particle Production of Vector Fields: Scale Invariance is Attractive , 2010, 1011.2517.

[78]  Sarah Shandera,et al.  Feeding your inflaton: non-Gaussian signatures of interaction structure , 2011, 1109.2985.

[79]  S. Matarrese,et al.  Anisotropic bispectrum of curvature perturbations from primordial non-Abelian vector fields , 2009, 0906.4944.

[80]  Richard Easther,et al.  Gravitational wave production at the end of inflation. , 2007, Physical review letters.

[81]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .