Group-III-Nitride Superluminescent Diodes for Solid-State Lighting and High-Speed Visible Light Communications

Group-III-nitride superluminescent diodes (SLDs) are emerging as light sources for white lighting and visible light communications (VLC) owing to their droop-free, low speckle noise, and large modulation bandwidth properties. In this paper, we discuss the development of GaN-based visible SLDs, and analyze their electro-optical properties by studying the optical power-bandwidth products and injection current densities. The significant progress in blue SLDs and their applications for white light VLC is highlighted. A blue SLD, with an optical power of >100 mW and large PBP of 536 mW·nm, is utilized to generate white light, resulting in a high color rendering index (CRI) of 88.2. In a modulation experiment designed for an SLD-based VLC system, an on–off keying scheme exhibits a 1.2 Gbps data rate, with a bit error rate of 1.8 × 10−3, which satisfies the forward error correction criteria. A high data rate of 3.4 Gbps is achieved using the same SLD transmitter, by applying the 16-quadrature-amplitude-modulation (16-QAM) discrete multitone modulation scheme for high-speed white light communication. The results reported here unequivocally point to the significant performance and versatility that GaN-based SLDs could offer for beyond-5G implementation, where white lighting and high spectral efficiency VLC systems can be simultaneously implemented.

[1]  Nan Chi,et al.  Ultra-high-speed single red–green–blue light-emitting diode-based visible light communication system utilizing advanced modulation formats , 2014 .

[2]  Mohamed-Slim Alouini,et al.  4-Gbit/s visible light communication link based on 16-QAM OFDM transmission over remote phosphor-film converted white light by using blue laser diode. , 2015, Optics express.

[3]  Boon S. Ooi,et al.  Superluminescent diodes using quantum dots superlattice , 2006 .

[4]  Nan Chi,et al.  A Gb/s VLC Transmission Using Hardware Preequalization Circuit , 2015, IEEE Photonics Technology Letters.

[5]  James S. Speck,et al.  Semipolar InGaN-based superluminescent diodes for solid-state lighting and visible light communications , 2017, OPTO.

[6]  Richard A. Hogg,et al.  Self-assembled quantum-dot superluminescent light-emitting diodes , 2010 .

[7]  Jeffrey Y. Tsao,et al.  Prospects for LED lighting , 2004, SPIE Optics + Photonics.

[8]  Gerard A. Alphonse,et al.  Design of high-power superluminescent diodes with low spectral modulation , 2002, SPIE OPTO.

[9]  R. F. Karlicek,et al.  Toward Smart and Ultra‐efficient Solid‐State Lighting , 2014 .

[10]  Tien Khee Ng,et al.  Large bandgap blueshifts in the InGaP/InAlGaP laser structure using novel strain-induced quantum well intermixing , 2016 .

[11]  Rajendran Parthiban,et al.  Laser-Diode-Based Visible Light Communication: Toward Gigabit Class Communication , 2017, IEEE Communications Magazine.

[12]  Hery Susanto Djie,et al.  InGaAs/GaAs Quantum-Dot Superluminescent Diode for Optical Sensor and Imaging , 2007, IEEE Sensors Journal.

[13]  Li Tao,et al.  8-Gb/s RGBY LED-Based WDM VLC System Employing High-Order CAP Modulation and Hybrid Post Equalizer , 2015, IEEE Photonics Journal.

[14]  Shin-ichi Nagahama,et al.  High-efficiency blue and green laser diodes for laser displays , 2019, OPTO.

[15]  Mohamed-Slim Alouini,et al.  20-meter underwater wireless optical communication link with 1.5 Gbps data rate. , 2016, Optics express.

[16]  K. Langer,et al.  513 Mbit/s Visible Light Communications Link Based on DMT-Modulation of a White LED , 2010, Journal of Lightwave Technology.

[17]  Nan Chi,et al.  750Mbit/s visible light communications employing 64QAM-OFDM based on amplitude equalization circuit , 2015, 2015 Optical Fiber Communications Conference and Exhibition (OFC).

[18]  Marcus Duelk,et al.  Superluminescent light emitting diodes: the best out of two worlds , 2012, Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components.

[19]  P. Perlin,et al.  Nitride superluminescent diodes with broadened emission spectrum fabricated using laterally patterned substrate. , 2016, Optics express.

[20]  Stephen P. Najda,et al.  Temperature dependence of superluminescence in InGaN-based superluminescent light emitting diode structures , 2010 .

[21]  Mohamed-Slim Alouini,et al.  Light based underwater wireless communications , 2018, Japanese Journal of Applied Physics.

[22]  I. White,et al.  High Bandwidth GaN-Based Micro-LEDs for Multi-Gb/s Visible Light Communications , 2016, IEEE Photonics Technology Letters.

[23]  Nan Chi,et al.  High speed visible light communication system using QAM-DMT modulation based on digital zero-padding and differential receiver , 2017, 2017 16th International Conference on Optical Communications and Networks (ICOCN).

[24]  Mark Hopkinson,et al.  Quantum Dot Superluminescent Diodes for Optical Coherence Tomography: Device Engineering , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[25]  C. A. Burrus,et al.  A stripe-geometry double-heterostructure amplified-spontaneous-emission (superluminescent) diode , 1973 .

[26]  Shuji Nakamura,et al.  History of Gallium–Nitride-Based Light-Emitting Diodes for Illumination , 2013, Proceedings of the IEEE.

[27]  C. Eichler,et al.  Cyan Superluminescent Light-Emitting Diode Based on InGaN Quantum Wells , 2012 .

[28]  B. S. Ooi,et al.  High-Power and High-Efficiency 1.3- $\mu\hbox{m} $ Superluminescent Diode With Flat-Top and Ultrawide Emission Bandwidth , 2015, IEEE Photonics Journal.

[29]  Tien Khee Ng,et al.  High-power blue superluminescent diode for high CRI lighting and high-speed visible light communication. , 2018, Optics express.

[30]  Nan Chi,et al.  High speed underwater visible light communication system based on LED employing maximum ratio combination with multi-PIN reception , 2018, Optics Communications.

[31]  Ruikang K. Wang,et al.  Theory, developments and applications of optical coherence tomography , 2005 .

[32]  U. Schwarz,et al.  Implementation and investigation of mode locking in GaN‐based laser diodes in external cavity configuration , 2015 .

[33]  C. Dimas,et al.  Wideband quantum-dash-in-well superluminescent diode at 1.6 /spl mu/m , 2006, IEEE Photonics Technology Letters.

[34]  M. S. Alias,et al.  First demonstration of InGaP/InAlGaP based 608nm orange laser and 583nm yellow superluminescent diode , 2015, 2015 IEEE Photonics Conference (IPC).

[35]  Nan Chi,et al.  1.6 Gbit/s phosphorescent white LED based VLC transmission using a cascaded pre-equalization circuit and a differential outputs PIN receiver. , 2015, Optics express.

[36]  O. Wada,et al.  GaAs-Based Superluminescent Light-Emitting Diodes with 290-nm Emission Bandwidth by Using Hybrid Quantum Well/Quantum Dot Structures , 2015, Nanoscale Research Letters.

[37]  Piotr Perlin,et al.  Design and optimization of InGaN superluminescent diodes , 2015 .

[38]  P. Wisniewski,et al.  High-Optical-Power InGaN Superluminescent Diodes with “j-shape” Waveguide , 2013 .

[39]  Chao Shen,et al.  A tutorial on laser-based lighting and visible light communications: device and technology [Invited] , 2019, Chinese Optics Letters.

[40]  Richard J. E. Taylor,et al.  Gallium Nitride Superluminescent Light Emitting Diodes for Optical Coherence Tomography Applications , 2016, IEEE Journal of Selected Topics in Quantum Electronics.

[41]  S. Denbaars,et al.  Group III-nitride lasers: a materials perspective , 2011 .

[42]  J. Fastenau,et al.  Quantum Dashes on InP Substrate for Broadband Emitter Applications , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[43]  Jinn-Kong Sheu,et al.  III-Nitride-Based Cyan Light-Emitting Diodes With GHz Bandwidth for High-Speed Visible Light Communication , 2016, IEEE Electron Device Letters.

[44]  S. Yakubovich,et al.  Broadband radiation sources based on quantum-well superluminescent diodes emitting at 1550 nm , 2003 .

[45]  M. Z. M. Khan,et al.  Self-assembled InAs/InP quantum dots and quantum dashes: Material structures and devices , 2014 .

[46]  Meng-Chyi Wu,et al.  High-Speed Light-Emitting Diodes Emitting at 500 nm With 463-MHz Modulation Bandwidth , 2014, IEEE Electron Device Letters.

[47]  A. Albadri,et al.  High Power GaN-Based Blue Superluminescent Diode Exceeding 450 mW , 2018, 2018 IEEE International Semiconductor Laser Conference (ISLC).

[48]  M. Duelk,et al.  GaN-based superluminescent diodes with long lifetime , 2016, SPIE OPTO.

[49]  J. Carlin,et al.  Broadband blue superluminescent light-emitting diodes based on GaN , 2009 .

[50]  Shuji Nakamura,et al.  2 Gbit/s data transmission from an unfiltered laser-based phosphor-converted white lighting communication system. , 2015, Optics express.

[51]  Christian Velez,et al.  3‐5: RGB Superluminescent Diodes for AR Micro‐Displays , 2018 .

[52]  Raffaele Rezzonico,et al.  High Power Blue-Violet Superluminescent Light Emitting Diodes with InGaN Quantum Wells , 2010 .

[53]  Shuji Nakamura,et al.  The blue laser diode-the complete story , 2000 .

[54]  P. Perlin,et al.  InAlGaN superluminescent diodes fabricated on patterned substrates: an alternative semiconductor broadband emitter , 2017 .

[55]  D. Feezell,et al.  Nonpolar ${m}$ -Plane InGaN/GaN Micro-Scale Light-Emitting Diode With 1.5 GHz Modulation Bandwidth , 2018, IEEE Electron Device Letters.

[56]  Chao Shen,et al.  Laser-based visible light communications and underwater wireless optical communications: a device perspective , 2019, OPTO.

[57]  M. Toda,et al.  Mode coupling in angled facet semiconductor optical amplifiers and superluminescent diodes , 1992 .

[58]  Piotr Perlin,et al.  Cavity suppression in nitride based superluminescent diodes , 2012 .

[59]  Mohamed-Slim Alouini,et al.  Worst-case residual clipping noise power model for bit loading in LACO-OFDM , 2018, 2018 Global LIFI Congress (GLC).

[60]  Shuji Nakamura,et al.  High-brightness semipolar (2021¯) blue InGaN/GaN superluminescent diodes for droop-free solid-state lighting and visible-light communications. , 2016, Optics letters.

[61]  James S. Speck,et al.  m-Plane GaN-Based Blue Superluminescent Diodes Fabricated Using Selective Chemical Wet Etching , 2009 .

[62]  Bing Xiong,et al.  Abnormal Stranski-Krastanov Mode Growth of Green InGaN Quantum Dots: Morphology, Optical Properties, and Applications in Light-Emitting Devices. , 2018, ACS applied materials & interfaces.

[63]  Nan Chi,et al.  LED-Based Visible Light Communications , 2018 .

[64]  S. Denbaars,et al.  High-speed 405-nm superluminescent diode (SLD) with 807-MHz modulation bandwidth. , 2016, Optics express.

[65]  Jianjun Yu,et al.  Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED. , 2013, Optics express.

[66]  Jeffrey Y. Tsao,et al.  Comparison between blue lasers and light‐emitting diodes for future solid‐state lighting , 2013 .

[67]  Richard A. Hogg,et al.  Gallium nitride light sources for optical coherence tomography , 2017, OPTO.

[68]  Piotr Perlin,et al.  High optical power ultraviolet superluminescent InGaN diodes , 2013, Photonics West - Optoelectronic Materials and Devices.

[69]  S. Denbaars,et al.  High luminous flux from single crystal phosphor-converted laser-based white lighting system. , 2016, Optics express.

[70]  M. Duelk,et al.  Recent progress on GaN-based superluminescent light-emitting diodes in the visible range , 2018, OPTO.